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NATTONAL ADVISORY COMMITTEE FOR ARRONAUTICS

TECHNICAL NOTE NO, 1360

THE STABILITY OF THE TAMINAR BOUNDARY LAYER
IN A COMPRESSTBIE FIUID

By Lester Lees
. SUMMARY

The present 'paper is a continuation of a theoretical investi-
gation of the stabllity of the laminar boundary layer in a com-
pressible fluld, An approximate estimate for the minimm eritical
Reynolds number Recrm » or stability limit, le obtained in terms

n . B PN B
of the distributionv of the kinematic viscoslity and the product of

—— ) % .
the mean density p* and mean vorticity :—:-"_—; across the boundary
- : v

.layer. With the help of this estimate for Recr ;, it 1s shown
. , _ , | nin
that withdrawing heat from the fluid through the solid surface

increases Recrmi and stabilizes the flow, as compared with the
n

flow over an insulated surface at the same Mach nunbgr. Conduction

of heat to the fluld through the solid surface has exactly the

oppoalte effect, The valusc of Recrmi for the insulated surface
n

decreases as the Mach number increases for the cage of a wmiform

free-stream velocity, These general conclusions are supplementod

by detalled calculations of the curves of wave number (inverse

wave length) against Roynolds number for the neutrsl disturbencos

for 10 ropresentative cases of insulated and noninsulatod swrfaces,

So far as laminar stability is concerned, an Important dif-
feronce exists between the case of a subsonic and supersonic frec-
stroam velocity outside the boundary layer. Tho neutral bowndary-
layer disturbances that are significant for laminer stabllity die
out exponentially with distance from the solid surface; thereforo
the phasc volocity co* of these disturgggcos 1s subsonic relative

to tho frec-stream velocity ug* - or u* - c*< ag¥, where ag*

: : R
1s tho local sonic velocity. When —o= = My <1 (vhere M, 1is
_ . . . ; =

o

free-stream Mach number), it follows that 0 < o* £ C* axs and eny
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laminar boundary-layer flow 1s ultimately unstable at sufficlently
high Reynolds numbers because of the destabilizing action of vis-
cosity near the s8olid surface, as explained by Prandtl for the

o . * -
incompressible fluid. When M, > 1, however, 2:: >1 - 5? > 0.
. uo-)(- o

' — Au*
If the quentity [E; (;* EE;) is large enouzh negatively,
dy* dy* e oF

the rate at which energy passes from the distwurbance to the mean

'22 (Ei 9%;) , can
4y W*/ =

¥

flow, which is proportlonal to .c*

always be large enough to counterbalance the rate at which energy
passes from the mean flow to the disturbance becausc of the desta-
bilizing action of viscosity ncar the solid swrface. In that case
only demped disturbznces exist and tho laminar bovndary larer is
campletely stable at all Reynolds numbers, This condition occurs -
vhen the rate at whilch heat is wlthdrawn from the fluild through
the s0lid surface reaches or excecds & critical value that depends
only on the Mach number ond the properties of ths qas, Calcnla-
tions show that for M, > 3 (epprox.) the laminar boundary-layer

flow for thermal equilibrium - vhere the heat condvctlon through

the s0lid swrface balsnces the heat redlated from the surface - 1s
completely stable at all Reynolds numbors under free-flight conditions
if the free-stream velocity is uniform. ‘

The rosults of the analysls of the stabllity of the laminer
boundary layor must be applied with care to discussions of transi-
tion; hovover, withdrzwing heat from the fluld through the solid

surface, for example, not only increases Recr but also
min

decreases the inltial rate of amplification of the self-exclted
disturbences, which 1s roughly proportional to 1 /\Felér .- Thus,
min
the effect of the thermal conditions et the solid surface on the
transitlion Reynolds number Ry i similar to the effect on Ry .
tI‘ i’ Crmin

A comparison between thils conclusion and experimentnl investlgzations
of the effect of surface heating on trensition at low spceds shows
that the resulte of the prosent papor glve the proper direction of
this effcct, '

The extension of tho results of the stabllity analyeis to
laminar boundery-layer gas flows with a pressire gradient in the
direction of the froe stream 1s discussed.,

J\E 3
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INTRODUCTION

By the theorstical studies of Helsonberg, Tollmien, Schlichting,
and. Lin (reforences 1 to 5) and the careful experimental Investli-
gations of Liepmann (reference €) and H. L. Dryden and hls asso-
ciates (reference 7), 1t has boen definitely establishoed that the
flow in the laminar boundery layer of a viscous hcmogeneous incom-
prossible fluid is unstable sbove & certein characteristlc critical
Reynolds number. When the level of the disturbances in the free
stream is low, as in most cases of technical interest, this inherent
instability of the laminar motion at sufficiently high Reynclds
numbers is responsible for the ultimate transition to turbulent
flow in the boundary layer. The steady laminar boundary-layer flow
would always represent a possible solution of the steady equations
of motion, but this steady flow is in a state of wmstable dynamic .
equilibriwm above the critical Reynolds number. Self-oxcited dis-
turbances (Tollmien waves) appear in the flow, and thess disturb-
ancec grow larzc enough eventuzlly to destroy the laminar motleon.

The question naturally arises as to how the phenomena of
laminar instebility and transition to turbulent flow are modified
" when the fluid velocities and bemperature variutions in the boundary
layer are large enough so that the compressibility and conductivity
of the fluid can no longer be neglected. The prescnt paper repre-
gsents tho sccond phesc of a theoretical investlgation of the sta-
bility of the laminar boundary-layocr flow of a gas, in which the
compraesibility and heat conductivity of the gas as well as 1is
vigcosity, are taken into account. The first part of this work
was presented in referonce 8. The objects of thie Investigetion
are (1) to dcvtermine how tho stability of the lamlnar boundery
layer is affected by the free-strecam Mach numbor and the thermal
conditions at the solid boundary and (2) to obtein a better under-
stunding of the physical basgls for tho instabllity of laminar gas
flows., In this sense, the present study 1s an extencion of the
Tollmien-Schlichting analysis of the stability of tho laminar flow
of an Incompressibleo fluild, bubt the investigatlon 1s alse concorned
with the general question of bowmdary-leyer dlisturbances in a
comprossible fluld and their possible intoractions with the main
cxternal flow.

SYMBCLS

With minor oxceptions the symbols wsed in tiils paper are tho
game as those introduced in rcefercnce 8. Physlcal guaniitics are

3
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denoted by an asterisk, or star, whereas the corresponding non- '
dimensional quantities are unstarred. A bar over a quantity denctes
mesn value; a prime denotes a fluctuntion; the subscript o  denotes
free-stream values at the "edge" of the boundary layer; the sub-

script 1 denotes values at the solld surface; and the sub-

script ¢ denotes values at the inmer "critical layer", vhere

the phase velocity of the disturbance equals the meoan Tlow veloclty.
The free-stream values are the characteristic measures for all non-
dimensional gquantities. The characteristic longth measure is. tho
boundary-layer thicknoss 5, oxcept where othervwise Indicated.

Note that in order to conform with standard notation, the symbol o
for boundary-layer thiclmess iz wnatarred, vhereas the symbols B¥
and 0 aro used for boundery-layer displacement thickness and
boundary-layer momentum thickness, respectlwvely.

x* distance along surface
y* 7 distance normwel to surface
¥ time
u¥ component of %elocity in x¢-direction .
we O
ﬁ;; -
w* ‘component of velocity Iin y*-diroction
V*’
V= ==
u*
WV stream function for mean flow
p¥* denslty of gase
¥ -pressufe of 288 A
% tomperaturo of agas )
T* laminar shear stress
ul* ordinary coefficient of viscosity of gos -

u¥ kinematic viacoaity of pas (pl*/p%)

b
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thermal conductivity of gas

specific heat at constant volume
specific heat at cdnstant Dreosgure

gas constant per gram

ratio of specific heats (op /Cv) ;5 1,405 for air

complex phase veloclty of boundary-layer disturbance
wave length of boundary-layer distwrbance

boundary-leye:r thickness

(0]
boundary-layer displacement thicknens (1 - pw)dy">
o Jo

{ue]

ow(l - w)dy*

boundary-layer momantum thickness
. 0O

wvave number of houndary-layer disturbance (2x/n*)

’

pb* uo%_a
Reynolds number . )

Hy ¥

-—-‘-* -;—.)E.
Po* Uy 6

ulO

e\, ————

*

——a

*
uO

Mzch number ——~--=:;_-__-
\1712* T ¥
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ulo*
C Prandtl number Cp ===

. K*
1. PRELIMINARY CONSIDTRATIONS

In the first phass of this investigstion (reference 8) the
gtability of the laminar boundary-layer flow of a gas 1s analyzed
by the method of small perturbetions, which was alresady so suc-
cegsfully utilized for the study of the stability of the laminar
flow of an incompressible fluid. (See reference 5.) By this
method a nonsteady wag flow is investigated in vhich all physical
quantities diifer from their vaelues 1n a glven steady gas flow
by swall perturbations that are functions of the time and the space
coordinates, This nonsteady flow must satisfy the complete gas-
dynamic equations of motlon and the same boundary conditions as
the given stendy flow., The quostion 1s whether the nonsteady flow
dempe to the steady flow, oscillates about it, or diverges from it
wvith tims - that is, whother the small pertwurbations are damped,

- noutral, oxr self-excited disturbances in time, and thus whether
She glven stoady gas flow is stable or unetable., The analysis is
partlcularly concerncd with the conditions for the existence of
neutral dlsturbances, vhich mark the transition from stable to
vnstablo flow znd define the minimum critical Reynolds mumber,

In order to bring out some of the principal features of the
stability problem without becoming involved in hopeless mathe-
matical complications, the sclid boundary is taken as two dimen-
sional and of negligible curvature and the boundary-layer flow is
regorded as plane and essentially parallel; that is, the velocity
component in the direction normal to the swrface is negligible and
the velocity component parallel to the surface is a function mainly
of the diestance normal to the surface. The small disturbances,
which are also two dimensional, are analyzed into Fourier com-
Ponents, or normal modes, periodlc in the direction of the free
stream; and the amplitude of each one of thess partial oscillations
18 a function of the distance normal to the solid surface, that

—— Il o
iS, uk'? = uo* f(y) eia\x'c‘t).

In the study of the staebility of the laminar boundary layer,
1t will be seen that only the local properties of the "parallel”
flow arec significent. To Include the variation of the mean velocity
in the diroction of the froe stream or tho volocity component normal

6
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to the solid boundary in the problem would lead only to hlgher order
termg in the differential equations governing the disturbances,
slnce both of these rfactors ere inversely proportional to the local
Reynolds number based on the boundary-layer thicknesa. (See,. for
example, reference 2.) By a careful analysis, Pretsch has shown
thet even with & prescure gradient in the direction of the free
stream the local mean-velocity distribution alone determines the
stability characteristics of the local boundary-layer flow at

large Reymolds numbers (reference 9), Such a statement applies
only to the stability of the flow witlhin the boundary layor. For
the interaction between the boundsry layer and a main "external"
cupersonic flow, for exmmplc, 1t is obviously the variation in
boundary-layer thicknoss and mean velocity along the surface that
ies significant. (Beoc reference 10.)

The eforementioned considerations also lead quitc naturally
to the study of individual partial oscillations of the

form £(y) Oia(x-ct), for vhich the difforential cquations of
disturbance do not contain ¥ and + oxplicitly. Those partial
cscillations are iceally suited for the study of instebility, for
in order to show that a flow iz unstable it is unnccessary to
conglder the most geonorsl . possiblo disturbance; in fact. the
slmplost will suffice., It 18 only necessary to show that a
particular disturbaice satisfying the squations of motion and the
boundary conditlons is self-excited or, in this case, that the.
imaginary part of tle complex phase velocity ¢ is positive.

In reference 8 the differential eguztions governing one
normal mede of the disturbances in the laminar boundary layer of
a zas were derived and studled very thoroughly. The complets set
of solutions of the digturbance equations wes obtained and the
physical boundary conditions that theaé solutions satliafy were
Investigated. It wes found that the final relation between the
values of ¢, o, and R that determines the possible noutral
disturbancos (limits of stability) is of the same form in the
compreasible fluld ag iz the Incomprebaible fluld, to a first
approximation. The basis for thie result is the Ffact that for
Roynolds nmumbors of the order of those encountercd in most acro-
dynamic probloms, the tomperature disturbances have only a negligible
offoct on thowe particular velocity solutions of the distuwrbance
equatlons that dopend. primarily on the viscosity (viscous solu-
tions). To a first approximation, theze viscous solutions there-
fore do not depend directly on tho heat conductivity and are of
the same form as in the incomprossible fluid, oxccpt that they
involve the Roynolds number based on the kincmatic viscosity necar
the solld bowndevy (wherc the viscous Torces arc importent) rather
than in the frec stroam., In this {irst approximation, the second

7
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viscosity coefficiont, wvhich is a measure of the dependence of the
prassure on the rate of change of density, doesc not affoct the sta-
bility of the leminar boundary layer. From these resvlts it was
inferred that at large Roynolds numbers the influence of the viscous
forcos on the stability is essentially the same as in an incom-
pressible fluid, Thic inference is Dorne out by the results of the
present paper. _ :

" The influcnce of the inecrtial forcee on the stabillty of. the
leminar boundary layer 1s reflected in the behavior of the asymp-
totic inviscld solutions of the disturbance equations, which are
indepondent of Reynolds number in first approxmation, The results
obteined in refercnce 8 show that the bohavior of the inertlal
forcss 1s dominated by tho distribution of the product of the mean

density' and mcan vorticity pa-“;'; across tho boundery layer. (The

: ' : d ¥ o
gradient of thie quantity, or a}ég), which plays the samc role

eg the gradlent of the voriticilty in the cagse of an incomproscible
fluid, is a2 meazurc of tho rato at which the x-momentum of the
thin layer of fluld near the critical layer (zhere w = c) ,
incroases, or decrcases, because of the transport of momentum by
the dlgsturbence.) In order to clarify the bohavior of thec incrtial
forces, the limiting casc of &n inviscld fluld (R~> ) 18 gstudiod
in dotail in roference 8. Tho following gencral criterions arc
obtaineds (1) If the gquantity %(pdf) vanishes for somec value

‘v. !

of w>»1 - =, then newtral and golf-cxcited subsonic distburb-
i - - . T
o ,

ancos oxist and the inviscid compreseible flow 1s unstable,

y

4 [a& L o
(2) If the quantity —»-QJ—E) does not venish Tor some valueo
dé' dv

It

,H

of % >1 - =, thon 21l subson'ié disturbences of finito wave

=

, ° ‘
- length aro damped and the invigeld compressible flow 1s stable.
(outside the boundary layer, tho rolative velocity betweon the moan
flow &nd +he X-component of the phasc velocity of a subsonlc dis-
turbance is loss than the mean sonic velocity. Tho maegnitude of
such a dizbuwrhance dics ovt cxponentially wlth distance {rom the
solid ewrfacc.) (3) In goenerzl, a disturbance 'gaine oncrgy from

. = 4 - .
the mean flow if ;—L—-( %) ig positive et the critical layer
. J' y i

(vhore w = c) cnd loses cnergy to the mean flow if [%: (pz-—;:)] <o

“W=C

8
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The general stability criterions for inviscid compressible
flow give some insight intc the offect of the inertial forces on
the stability, but they cannot be taken over bodily to the real
canpressible fiuid., Of course, if a flow is wnstable in the .
limiting case of an infinlte Reynolds number, the flow is unstable
for a cortdin finite range of Reynolds number., A compressible Ilow
thet 1s stable when R~ ®, however, is not necessarily stable
2t all fialte Reynolds *mmbers vhon the effsct of viscosity is
taken into account, One of the obJocts of the prcsent papsr 1s
to settle this gquestion,

On the basis of the stability criterions obtained in refer-
cnce 8, some gencrel statements were made concerning tho effect of
thormel condltions at the solid boundary on the stability of laminar
bowndary-layor flow. It 1o concluded Trom physical reasoning and

a/a
a study of the equations of me¢an motion that the guantity Ey (p%)

vanishes for some value of w >0 3if (g—?}) £ 0, that is, if
1

heat ip added to the fluld through tho solld swrface or IT the

' sumace is Insulsted, I &fn) >0 and is sufficlently large,

that is, if heet is withdrewn fro.n the fluid through the solid
.l, \, v
surface at a sufflicient rate, the quantity < (pc‘:y ; nover vanishes,

. YA
Thug, when (-—-) < 0, the laminar boundary-layer flow is desta-
ay

bilized by the action of the inertial forces but stabilized
through the increase of kinematic viScosity near the solid surface,.

Vhen (B_ > 0, the reverse is true. The question of which of
37
N, K l
these effects 19 predominant can be angwered only by further study
of the stability pro‘ucm in'a real compressible fluld.

In the presenﬁ pa por thls invest* gutmn -s continued along the
followlng liness :

(l) A study is m'xde of ‘how the general criterions for insta-
bility in en inviscid compressible fliid sre modified by the
introduction of a small v:Lscos:Lty (Su@Dl] 11,3 at very large
Reymolds mm‘vers) s
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(2) The conditions for the exlstence of neutral disturb-
ances at large Reynolds number are examined (study of asymp-
totic form of relation between elgen-values of ¢, «, and R).

(3) A relatively simple expression for the approximate
value of the minimum critical Reynolds number is derived;
this expression involves the local dlstrlbution of mean
veloclty and mean temperature acroes the boundery layer. This
approximation will serve as & criterion from which the effect
of the free-stream Mach number and thermal conditions at the
s80lid surface on ths stablility of laminar boundary-layser flow
1s readily evaluated. The quostion of the relatlive influence

of the kinematic viscosity and the distribution of p%§ on
stability would then be settled.

_ (4) Tho energy belance for small disturbances in the roal
compressible fluld is considered In an attempt to clarify the
physical tagls for the instabllity of laminar gas flowa.

(5) In order to supplement the investigations outlined
in the four preceding parapraphs, dctalled calculations are
made of the limits of stability, or the curve of o agalnst R
for the neutral disturbances for several representative cases
of insulated and noninsulated surfaces. The results of the
calculations are presented in figures 1 to 8 and tables I
to TV. The method of computation of the stability limits is
briefly outlined in reference 8, although the calculations
were not carried out in that paper.

In the present investigation the work of Helsenberg (refer-
ence 1) and Lin (reference 5) on the stabllity of a real incom-
pressible fluild is naturally an indispensable guide. In fact, the
methods utilized in the present study are analogous to those
developed for an Incompressible fluld.

The prescnt paper is concerned only with the subsonic disturb-
ances. The amplitude of the subsonic disturbance dies out rapidly
with distance from the so0lid bowndary. In other words, the neutral
gubsonic disturbance 1s an "eigen-oscillation" confined mainly to
the boundary layer and exists only for discrete elgen-values of c,
a, &and R that determine the limits of stabllity of laminar
boundary-layer flow. Disturbances classified in referenco 8 as
neutral "supersonic," that is, disturbances such that the relative
velocity between the x-component of the phase velocity of such a
disturbance and the free-stream velocity 1ls greater than the local
mean souwnd speed in the free stream, are actually progressive sound

10
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waves that impinge obliquely on the boundary layer and are reflected
with change of amplitude, For disturbances of this type the wave
length and phase velocity are obviously completely arbitrary (eigen-
values are continuous), and these disturbances have no significance
for boundary-layer stabllity.

When the free-stream velocity 1s supersonic (MO > l), the
subsonic boundary-layer disturbances must satisfy the requirement

— — 1
that uo*-c*<ao* or C>l-ﬁ- (for M, < 1, c__>_:O). Now,
: o}
by analogy with the case of an incompressidle fluld it is to be
expected that for values of ¢ greater than some critical value of oy

say, all subsonlc dlsturbances are damped. Thus;, when M, > 1,

there 1g the posslbllity that for certain mean velocity-temperature .
digtrlbutions acrosa the houndary layer, neutral or self-excited
dlsturbances satlisfying the differential equations of motion, the

l
boundary conditions, and, also, the physical requirement that ¢ > l-ﬁb
' 0
cennot be found. In that event, the laminor boundary flow is stable
at all Reynolds numbors. This interesting possibility is investi-
cted In the present paver.

2. CALCULATTON OF THY LIMITS OF STABILIIY OF THE LAMINAR
BOUNDARY TAYER IN A VISCOUS CONDUCTIVE GAS

In order that thc complete system of solutions of the differ-
ential equations for tho propagation of smell disturbances in the
laminer boundery layer shall satisfy the physical boundary condi-
tions, tho phese veloclty must depond on the wave length, tho
Roynolds number, and the Mach number in a manner that 1s determipod
enbircly by the local distribution of mean velocity and mean tempora-
ture across the boundary layer. In othor words, the only possible
subsonic distwrbances in the laminar boundary layoer are thosc for
vhich there exists a definitc relation of the form (referonce 8)

¢ = cfa, R, M2 (2.1)
(@ & 12)

Since @, R, and MO2 are real quantities, the relation (2.1) is
equivalent to the two relations

11
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2
c,. = cr(a,, R, M, ) B (2.1a)

e; = ¢4 (% R, M2) " (2.11)

The curve Ci("" R, 1402) =0 \or a= cn(R, Moe)) for the neutral

dlsturbances glves the limits of stability of the lamlnar boundary
layer at a glven value of the Mach number. From this cuwrve can be
determined the value of the Reymolds number below which dilatwrbances
of all wave lengths are damped and above which self-excited disturb-
ances of ceitaln wavo lengths appear ln a glven leminar boundary-
layer flow.

In reference 8, it is shown that the relation (2.1) between
the phase velocity and the wave length takos the followimg form:

2 e, M2) = F(2) (2.2)

In equation (2.2), ¥(z) 1s the TistJens function (reference 11)
defined by the relation

f; g3/? (l) { (ig)J/e}dg

-7,

j ’“"‘Hw {(15)3’2%&

Flz) =1 + (2.3)

where

SRV
z < (v -yl) (2.4)

and the quantity Hl/ (1) 15 tho Hankel function of the first kind
of order 1/3. Tho prime denntes differentietion with respect
to y. The function T (m, c, Moe), vhich depends only on *he

12
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asymptotic inviscid solutions ¢ &nd 9o (section h of refer-
ence 8) and not on the Reynolds mumber, is defined as follows:

P11 P2’ + BPyp

o1 Ppp! + BPpo

2
(yl - yc) E(&, c, M, ): ‘ : . (2.5)
qu)ll + MO W’l C(pll
/ S = P10" + BPpp
Tl - MO C '
Tyopy! o+ MoPwy todpy
- — Pon' + PP
Tl - Moecr..
where
B = a\'l - Moe(l - ¢c)2
q)'ij = cPi(YJ) > (2—6)
i, J=1, 2 -

and yl and y, ere the coordinates of the sclid surface and the
"edge" of the boundary layer, respectively.

The TietJens function was carefully recalculated in reference 8,

: 1
and the real and imaginary parts of the function &(2) = -———+

are plotted in figure 9. (The function &(z) 1is found to be mors
suitabl? then F(z) for the actual calculation of the stability
limite,

The inviscid solutions cpi and @, were obtained as power

2

series in o« as follows (section 6 of reference 8):

13
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[o2]
cpl(y; ag, c, MOQ) = (w - ¢) Z aenha;(y; c, MOQ) (2.7)
n=0 )

'CD
-@2('; o, ¢, Moe) = (w - ¢c) Z d,enkem_l(y; c, Moe) (2.8)
n=0 ,

vherse for n 21

y ' B 4 ‘
T : 3
———— Mc,e] dy — hen-e(y; c, M,5)dy
- Uw-c)? T

-C

hen(y; c, MO?) =
! 7y

and

and for n__?__l

A [Pre . [w- )2 3
k2n+1(Y; c, My, >* [-——-——-— -Mo:idy -——-T——— kEn-l(y; c, My ‘)dy (2.10)
v ‘ .

(v-c)?
Uy

and

‘The lower limit in the integrels is taken at the surface merely
for convenlence, When y > Tos the path of integration must be

taken below the polnt ¥ = Yo in the complex y-plane. The power
serles in @2 are then uniformly convergent for any finlte value
of a.

1k
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At the swrface, the Inviscid soluticns are readily evaluated

At the "edipe"

%10

a2

i

Cpll T W
- L 4
P "W
Ppp = O r
1 2 0
1 — — - -
Poy = C(Tl ¥ C) -

of the bovndary lasyer, the Inviscid solutions ere
most conveniently expressed as follows:

(1

(2

oo

e) }_ ocenﬂgn(q , Moe)

n=0

c)

A
c)[:

[\/]3

" Kon (& 4,7)

7
o

2

2
on-1\C> MO )

- M 201 - c)e]

i~

- 2
l c) 1
201 _ 21 &= .
c) l-MO,(l CL ; o (GM2>
(1 - o) 5 Ve
- ¢C n-=Q
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where
m 14,2) = by (5 o5 M 2) )
2n C, My - h?n y’...” » o
Ho = 1,0
- 2 - 2
Ko\ )" Koni1lWpi © Y ) ~

1 - M 201 - 9B

(1 - ¢)?

i

1 .
5 o o (2:23)
LN MO> han'(YE‘ ¢, My )

211
1 - M2 - c)"

1t}

: 2
1{En+l' Jpi ©s MO)

K.an(c, 1«102)

(1 - c)2

Ko = 1,0 J

With the aid of equations (2.11), the expression for L!‘(a.,., c, 1‘402)
can be rewritten as follows:

Hons" + B
T(or. ¢, M, ) 1+7~(C) o (%22 - 22)» (2.1%)

v (o' * B9) + 3 = T (P12 + Bop)

where
. w, ! y -y :
1 c 1
a(e) = ._m...g_....._..__....)_ - ) (2,15)
C .

The relation (2.2) botween the phase velocity and the wave length
is brought into a form more suitable for the calculation of the
stability limite by making use of the fact that for real values

of ¢ the imaginary part of EGL,' c, Moe) is contributed largely

16
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by the intesral Ki(g, Mbe). (The procedure £0 be followed is

identical with that used by Lin in the limfting cese of
the incompressitle fluid (reference 5, part ITI).} Define the
function &(z) by the relation

1 o
Alz T —— E———— 2.16
‘3’(7) l - J Z) . ( )
Then,
1 (w4 iv) -
5 Z e R I l b )\‘\ S e s . 2.1"
Q( ) 1-F ( / Yo )\,Zu +« 1v) ( 7)
wiere
vl Mo’ o+ R\
R A e (2.18)
- Ty P2’ * PPyp

~Equation (2.17) is equivalent to the two real relationg

_ (1 + Mv
8 (=) - (1 a)? 5 a2 - (229)
r. R - T '
3(2) = (1) | ML) ¥ dv ‘  (2.20)
(1 +2)> + k‘ved :

The real and ‘maginary parts of ¢§(z) are plotted azainst z in
figure 9. ’

The dominant term in the im~ginary part of the right—hand sids
of equation (2.18), which involves Ey (c.', MO?'), is extracted by means
of stralchtforwerd 2lgedraic transformstions. Relstion (2.18) becomes

17
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(azz"e)

222 2)

(12°2)

sT uotqemxoxdds sTUL) FUOTFBTNOTEO £3TTIAR}S OU3 UT JNO00 3BUL

1z

Ty g1
o, Tn

i
t
A

1

g
it

E:ﬂ

.?dmzﬂ Lowa‘amw -2 = 1) +A,6M|.ﬁ
S (0 = )% - Th |

353 PWol ST 3L
~pequdmod L{TpRed BF Amoz «ov LY reBegut oy Jo juaed Lrevdemt euy (v xTpuedds ut Joney potsissnl

O PpueB D JO SoTBA ©BOY} JOJ

‘Yo BT O USUM

puB

c Mu U JI0J puw

oIoUM

18




NACA TH No. 1360

" a vy
I.P. Kl(C,M ‘}z—ﬂd-»‘--r [é:. ;;-]
(wc')~ TN Ay
m oy T m 1 - -
. e Y )
= - ﬂ w—e<——- -"‘—?"‘ (2.23)
ot 4
(wc wc TC

Now A(c) 1s generally quite emall, tharerore &(z) can be
taken equal to v(c) ana &,.(z) can be tokon equal to u as a

zeroth epproximation. From equations (2.19) &nd (2.20), when ¢
is real '

SO | “om $
(0)( (O)) . - m'l c TC wc.—v E& ) (O ..)h)
Qi z =V R - "5""—“ —""".' '2" ':‘»' L T el :
. 1 (wc ) o c

u(O) - QT(U)G(G}> (2'25)

By equation (2,2L4), z(O) le related to ¢ with the eid of figure 9;

and by equation (2.25), uw(®) 15 2100 velatea to c. The cuantity aR
is connected with ¢ by means of the identity

- : NS
R = O _ (fi) ' (2.26)

. 3
wc'(l + A) c

and the corresponding values of are obtained from equation (2.21)
(slightly trensformed) by a method or Successive approximations,

1
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Thus,
2, l )2 ‘
wl C (1 G.QHE) \/l MO ( Z é- i’_ aenNgID- i a?nnth
c)s o\ 1 =1 on-l
, (2.27)
o V1-MP(1-0)? & L
(u ) XO@I‘*%\F?;_(C);) -2 o Jﬂal>
where

(The symbols My and Ty now desipmats tho real parts of the
integrals My mnd Nk.) The iteration vprocess 1s begun by taking
a sultable initilel value of .o on the rimht-Jand side of equa-
tion (2.27). The methods adopted for computing tiese intesrsls
when the mean veloclty-tempersture profile is Imown are described
in appendixes A to C.

For greater accuracy. the values of 7 and uw for a given
real value of ¢ are computed by successive approximotions. From
equations (2.19) and (2.20),

S TACE) W ’vz‘ ' (2.28)
@-+ Ku(n))L wNBE

o) cI,(ndril)((rlhl)) (l+“’(n)) ”m - M (2.29)

(l -+ K) (l AL ‘l)) 1+ )\‘u(n)

_The value of v 18 always approximated by relation (2.24).

Curves of wave mmbor aguinst Reynolds number for the neutral
disturbance have been calculated for 10 reorssenbative cases
(fig. h) that 1s, Insulated surface at Mach numbers of 0, 0.50,
0.7C0, 0.90, 1,10, &nd 1,30 and heat transfor across the solid swrfsce

20
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at a Mach number of 0.70 with valves of the ratio of swrface tempera-
ture to free-streem temperature T; of 0.70, 0.80, 0.90, and 1,25,
(It is found more desirable to base the nondimensional wave number and
the Reynolds number on the momentum thickness 0, +vhich 1s a dlrect
mogsure of the skin fricticn, rather than on the bowndary-layer thici-
ness 8, which is somowhat Indefinite.) :

In figure 5 the minimum critical Reymolds mumber Recr , or the
' min
stability limit, is plotted sgainst Mach number for the Inswlated
surface; and in figzure 6(a) Py - is plotted against T, for
Crmin

the cooled or heated surface szt a Mach numboer of 0.70., The marked
stabilizing influence of & withdrawal of heat from the fluid is
clearly evident, Discussion of the physical significance of these
numericel results is regerved until after general criterions for
the stability of the laminar boundary layer have been obbtained,

3. DESTABILIZING INFLUFNCE OF VISCOSITY AT VERY LARCE RUYNOLDS
NUMBERS; YXTENGSION OF HEISENBLRG'S CRITERION
T0 THW COMPRESSIYBIE I'iUID

The numerical calculation of the limita of stability for several
particular cascs glves some indication of the effects of free-stream
Mach number and thermel conditions =t the solld swrface on the sta-
bility of the laminar bound:ry laycr., It would be very desirable,
however, to establish genmeral criterions for laminar instability.

For tho incompressible fluid, Helscnberg has shown that tho influcnce
of vigcogity is gonerally destabilizing at vory large Roynolds
numbers (reforence 1). HiF criterion can be stabod as followa: If

& neutral disturbance of nonvanishlng phasoe volocity and finito wave
length cxiste in an Inviscid fluid (R-—¥«) for a glven mean velocity
distridutlon, a disturbance of the same wevo longth 1s wmstable, or
self-excited, in the roal fluid ab vory large (bub finite) Reynolds
numbors.,

The same conclusion can be drewn from Prandtlls discuseion of
the encrgy belance for small disturbences in tho leminar boundary

layer (reference 12).

Helsenberg's critorion is established for subsonic disturbances
in the laminar boundary layer of a compressivle fluid by an argument
quite similar to thdat which he gave orizinally for the incomprossible
fluld and which was leter supplcmented by Lin (reforcnce 5, part IIT).

21
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At very large Reynolds numbers, the relation (2.1) between the phase
velocity and the wave lengbh can be considerably simplified, When M
is finite and ¢ does not vanish, |z|>> 1 at large Reynolds
numbers. The asymptotic behavior of the Tistjens function F(z)

as |z|~3o 1s glven by (referonce 5, part I)

_ a fh
(51 - 9) F(2) = _': (3.1)
o — c

'UC

and the relation (2.1) beccomes

(3.2)

."f) GL, c, M, )"El(a’ C,M )

where E(oc, c, Moz) 1a glven by equation (2.1k4),

Suppose that a neutral disturbance of nonvanishing wave

o 1 .
number og = )\-'-31— and phagse velocity Cq >1 - T exists in the
3 o fo) .
inviscid fluid (Limlting ceso of sn infinite Reynolds number). The
phase veloclty ¢  1s a continuous function of - R, and for a dis-
turbance of glven wmve number ay the value of c at very large

Reynolds numbers will differ from Cy Dby a emzll Increment Ac,

Both sides of equation (3.2) can be developsd in a Taylor's, gories
~In &c, and an expression for Ac can be obtained as follows:

O.b ‘
Ela.,cM).hl(s, S,M"’)( A+ . . .
(J(‘

m /h

E_ + O(Ac)] (3.3)

22
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The boundary condition

P20’ (“s’ %e’ 'Moej + Pg¥o @s’ %y’ ‘502) =

(3.1)

must be satisfied for the inviscid neutral disturbance, and the

function El(?s’ Ca:

that

reduces equation (3.3) for Ac to the form

From equation

&) -

ﬂi/h

Fo®) .

™

\

(2.14),

{ [0 @ © 17) P90 o0 o Moe)]}c:c

”-—-

MOE) vanishes (equation 2.1%)}. Recognizing

Tl VCP].E’(@S’ Cg» Moe) + BgPio @5, Cqs Moe)

23
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and the expression for Ac 1is

a1/l
L T, o Ji - M2(1 - Cs)e @11/ . — (.9)
I - 2 - MB2(1 - cg\° ' .
% Voq 55 (l -(c5)3 S)-'+a@ Vl B M02(1 ) CS)E Kl'<;5’ MOE)

Evaluation of the integral Kl(c, MOE) yields the following result:

1

2) — . [;-(?ﬁ>] (In ¢ - ix) + 0(1)  (3.10)
’°()°"‘"

a [/w' _'
Since the quantity [-—- (’f—)] vanishes (reference 8), differ-
ay \1 , -y :

entlation of equation (3.10) gives

p 2

( . M 2) : = . ac WC')3 () (ln c -J.:t)+0(l)
e

(3.11)

Thus, Kl'<cs, MOE) 1s approzimately real and positive for small
1

With ¢y, > 1 - T I.P. Ac mwet also be posltive
1 - :
o]

(equation (3.9)); therefors, a subsonic disturbance of wave

length )\. / 0, which is neutral in the iInviscid compressible

fluid, is sel:t‘ excited In the renl compressible fluid at very large
(but finite) Reynolds numbors.

valueg of Cgq-

e5
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Tn referonce 8, 1t was proved that a noutral subsonic boundary-
luyer disturbance of nonvenishing phese velocliy and finite wave
length exists in sn inviscid compressible £lvuid only if the quan-

v 1
tity g——(d—"‘l> vanishes for some value of w> 1 - i-I— If this
ay \ 4y, 1,

condition is satisfled, then self-oxcited subsonic disturbances
also exist in the fluid, and the lominar boundary layer 18 unstable
in the limiting case of an infinite Reynolds numbor. By the oxten-
sion of Holsenborg's criterion to the comproscsible fluid, it cen be
gseen that, far from stabilizing the flow, the small viscogity in
tho rocl fluld has, on the contrery, a destabilizing influencc ab

vory large Reynolds numbers, Thus, any Tamingr boundary-layor flow

d /&
in a viscous conductive gas for which the quantity %(pd%:) vanishes

1
for some value of w> 1 - e ig wnetedlo at sufflciently high (vut

i

finite) Reynolds numbers.

. a [aw . 1
Tnless the condition —ip=— } =0 for come valuc of W 1 « e
dy \ M,

is satisfied, all stbsonic disturbances of Tinite wave lenath are
damped in tho limiting case of infinite Reynolds numbcer, and the
inviscid flow is stable, Since the offcct of visceslity 18 des-
tabilizing at very large Reynolds numbers, howover, a laminar
boundary flow that is steble in the limit of Infinite Reynolds
numbor is not necessarily stable at larze Reymolds numbers when the
viscosity of the fluid is considered. (Scc fig. 4(1).) In fact,
for the incompressible fluid, Lin has shovm thet overy laminer
boundary-layor flow is unctable at sufficiently high Reynolds
2
numbers, vhothor or not the vorticity gradicnt 4w vanishes (refor-
dye
ence 5, paxrt ITI). In order to settle thls questlon for the com-
prossible fluld in goncral terms; the relatiom (2,1) betwoen the
complex phase velocity and the wave leagth at large Roynolds mumbers

murt now be studicd for flows in vhich tho quantity %(p:y—-w) doos

not vanish for any value of w S 1 - f&-—-.
o
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4, STABYLITY OF LAMEIU/R BOUNDARY LAYFR AT TARGE REYNOLDS NUMBERS

The neutral subsonic disturbance marks a possible "boundary"
between the damped and the nelf-excited disturbance, that 1is,
betwveen stable and unstable flow, Thus, the general conditions
under which self-excited disturbances exist in the laminar boundary
layer at large Reynolds numbers can be detexrmined from a study of
the behavior of the curve of a apainst R for the neutral
disturbances. When the mean free-stream volocity 1s subsonic (#O< i),

the physical situation for the subsonic disturbences at large
Reynolds numbers is quite similar to the analogous situatlion for
the incompressible fluid, The curve of a against R for the
neutral disturbences can beé expected to have two dlstinct asymptotic
branches that enclose a reglon of instability in the o,R-plane,
rogardless of the local distribution of mean velocity and mean
temperature across the houndsry layor, When the mean free-streanm
veloclty 1s supersonic (Mb > 1) the gituation is somevhat 4if-

ferent; wnder certain conditions (soon to be dofinog) a neutral

or a self-oxcltod subsonic disturbance (¢ > 1 - ﬁ?— cannot exist
(8]

at any value of the Reynolds number, For this reason, it is more

convenlent to study the case of subsonic and supcrsonic free-stream

veloclty seperately.

a. Subsonic Freo-Stream Velooity (M, < 1)

"The asymptotic behavior at large Reynolds numbers of the curve
of .0, ageinst R for tho neutral Aisturbances is detormined by
the relations (2.19) to (2.22) between @, R, and c¢ for real
values of c¢. TFor small valwes of o« and ¢, these relations
are glven approximately by

‘ oy tc D2 a St » B
v(c) = ¢,(z) = - jfi“”"’s"g [%' E';] (k.2)
t
1 _ (WC ) L/ w=C

wea () | (1.2)
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1.76 -

R = Tle," (%)3(\-71:!)2 ' - (k.3)

chl

Vl -M 2(J. - ¢)? (4.h)

Q=

As R—>»», eoither z-—» o or 2z rcmains finitec while -
both « =nd c¢ approach O. These two possibllitles correspond
to two asymptotic branches of the curve of « azainst R.

Tover branch.- If z remaing finite as R—> w, then c¢-—30;
and by equation M 1), @i(z)-—-)o. Therefore, 2z-—»2.29 while

nw—>2.20 (fig. 9). From equations (4.3) end (4.4), along the
lower branch of the curve of « against R for neutral stability

G '>'>'<1 )

1 - (L.5)
T, ‘
= 2,29 « . (4.5)
5 ,
wl’ Vl - My
and a—+0 at large Reynolds numbers (fiz, 4(1)).
Upper branch.- Along the upper branch of the curve of a
againset Tor neutral stability, z-—>w and
!W'L'C W'
@1(2) o [ (—)] ......_-" W S— (x.7)
* W= 2a R c3
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' . a fw'
while u-—3>1.0 (fig. 9 and cquation (4.2)). If the quantity a—;r(,f—)
does not vanish for any value . of w > 0, thoen by eguation (&. '.7 ) A
c must approach zero as 1z —3®, Along this branch,
( (1 e 5/ 1
') - %) (4.8)
5 2l «%2 6
'cn...—-.——-———-———@‘ ‘ T . (h-9)

and a--»0 at large Reynolds numbers (fig, L1(1)).

- -d- ) ) - .
On the other hand, if E;' g— vapishgs for some value
~of w=.cg >0, then by equation (4.7), ¢ —>cy; and a-——rag
as both z and R approach o. Now, ’

[d., /] 5‘2@ g:‘ﬁ) ‘dfO é‘(’")j ]

-l
It [ C)] does not vanish (see appendix D), then by equa-

tions (L.h) and (%.7), along the upper branch of the curve of a
agalnst R for the neutral disturbances,

29
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(

Vl .
EnET 0.24 de (,,.)‘L c _ Ce)2

. wl'c —
ax =1 - H 20 - 0)2 (k.12)
Ty °

(%.11)

and c-~-yc_ 40, a—> e, # 0 at large Reynolds mumbers.(figs. U4(k)

2
and 4(1)). If [ﬂ___ ("i:> vanishes, the relation (4.11) is replaced

by

Q(Wl ,)10 1 1
" neTlo'.ebr {._.. (___} ] 552)2

vhich reduces to the relation obtained by Lin in the limiting case
of an incompressible fluid when M,—>0, the solid boundary is

insulated,and W' = 0 for some value of W= c_ >0, (See equa-
tion (12.22) of reference 5, part III.)

(4.13)

d t
If the quantity a—y—-(g—) vanishes at the solid boundary (that

is, for w = 0), 1t can be shown from the equztions of motion

2 .
d - ¥
(appendix D) that ———-(3—'— is always positive - except in the

2
ay 1
limiting case of an incompressible fluid., TFor small values of y,
a ' A
the quantities a-y (;— and -%—- are both positive and increasing,
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' 1
For large values of y, however, %’:—--—-)0, physically; there-

A d /!
fore — must have o maximum, or —{ —
T dy\T

of w>0, and this case *s no different from the general case

treated in the preceding paragraph. In the limiting case of 2n jncom-
: 2

preseible fluid, when W' vanishes st the surface, wc" =w v

2w, ')
. ..
since w,''' always vaniches in this case. From equation (%.8)

the relation between @ and R along the upper brench of the
neutral stablility curve 1s therefore

=.0 for some value

2w 1 2 |
s e

whaich 1s identical with equation (12,19) in reference 5, part ITI.

Thus, regardless of the behavior of the quantity a;(%’-) -

regarcless of the local distribubion of mean velocity and mean
temperature across the boundary layer - %hen ¥y« 1, the curve
of a agalnst R for the neutral disturbances has two distinct
branches &t large Reynolde mumbers. TFrom physical consideretions,
all subsonic distwrbances must be damped vhen the wave length is
sufficlently small (o large) or the Reyunolds mumbor is sufficiently
low. Consequently, the two branches of the curve of o againet R
for the neutral disturbances must Join eventually, and the region
bstween them in the «,R-plane is a region of instebllity; that is,
et & glven value of the Reynolds number, eubsonic disturbances with
wave lengths lying between two critical values A.J and >»2 (a.l_

and a.2) are self-excited, Thus, when Mo < 1, any laminer

boundary-layer flow in a viscous conductive gas ig m_gg‘g_a_pbl.gt éic_
sufficlently high (but finitc) Roynolds numbors,

The lower branch of the curve of a acginst R for tho neutral

disturbances is virtuslly unaffected. by the distribution of 4. Y«)
v \T

acrcss the bowndary leyer, but for tie upper branch the bohavior of
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‘ a fw' a [
the quantity — (=—] 1s decisive. Vhen —— (-} =0 for some
dy \T dy \T
value of W = Cq > 0, the neutral subsonic disturbance passes

continuously into the characteristic inviscid. disturbance c=cg
and @ =0y 88 R-——o. This result is in accordance with the

results obtained in reference 9 for the inviscid compressible fluid
and ig in agreement with Helsenberg's criterion. In additiocn,

2

all subsonic disturbances of finite wave length X > Ag = =z (and
.
: ]

nonvanishing phase veloclty 0 < c. < cg) are self-cxclited in the

limiting case of infinite Reynolds number. On the other hand,
d \

when =—— %—) does not vanish for any value of w> O, then
except for the "gingular" neutral disturbance of 2610 phase velocity
and infinite weve length (c = 0 and a = 0), all disturbances

are damped in the inviscld compressible fluid, This singular
neutral disturbance can be regarded as the limiting case of the
neutral subsonic disturbance in a real compressible fluid as R-—w,

b, Supersonic Free-Stream Velocliy \M > l)

When the velocity of the free stream ls supersonic, the sub-
scnic boundary-layer disturbances must satisfy not only the differ-
entlal equations and the boundary conditions of the problem but

also the physical requirement that ) >1 - i’{-— The asymptotic

_ o .
behavior at large Roynolds numbers of the curve of & against R
for the neutral subsonic disturbances 1s determined by tho approxi-
mate relations (4.1) to (U4.4), with the additional rostriction

that ¢ > 1 --;‘T-. A8 c—3>1 - i—, a-30 by equation (b.%);

o 0
thorefore R—3® by equation (4.3). The corrcsponding value (or
values) of z 1s determined by eguation (4.1) es follows:

! (”) '\
Q (z) v(e) =v<-“>, — dv(w_) (4.15)

WC:l--]--
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d_ 1
Tow from physical consideraticns, E"(%'\ < 0 for large
¥y
¥
valuee of y. Therefore, if g-;(%-) = 0 {changes sign) for some

G "
value of w=cg> 1 - L-, then, in general, l’—-— Jf-)-] S0
M, - LAy \T J 1

Wz Lo
My,
4
and Qi(z) 1 <0 {oquation (4.15)). Frou fisure 9, it can be
C"_’l--.n
Mo

geen that In this case there is only one value cf z ‘z P say)
corresponding to the value of (})i(z) glven by equation %ls.l5) .

From equations (4.2) to (It.4), along the loyer branch of the curve
of a ageinst R for the neutral distwrbances, -

m L7867, n\2, 3
VAR i

'1\3 .
Y-
Q

l —
"1 <l i MO) Vat,
a ~ g {1C

4
- -
Tlul | V o

- L .
and c-——31 - i at larage Reynolds numbers (fig. k(k)). The upper
. - o T

brench of the curve in this case 78 given by scuations (4.11)
r

%
EVGR\AN

venishes, with c——cg > 1 - Sl and  «—>dg £ 0.
: M
(¢

Rz

(.17)

and (.12), or by equations (4.13) and (h.12) if
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If —(——) vanishes for v =1 --l—-, then z-—>cw ag R—)o®

M
along the upper branch of the cwrve of cco a&,ainst_ R for the
neutral disturbances, and @i(z)—-—-) Wl' . Now a-—>0
VEG, —c3
ag c-=—>1 - -;-;- in this case also (equa"cion (%.17) with w = 1.0)
8o that °
(W )12 M2 1
R =» (.18)

9,“!-'

' 2 ] 2
n?‘l‘lh‘“ 1.2 [[a /“’
M, i J’
1

Aiong the lower branch of the curve of a against R at large
Reynolds num‘bers, a, R, end c¢ are connected by equations (4,16)
cnd (4.17), with z, = 9 29 and u; = 2.29. In spite of the fact

1
that -—(-—-) 0 for w=1 -, a neutral sonic disturbance
\ M,
(c =1 - ﬁ—) of finite wave length does not exist In the inviscld
o

fluid unless Kl(c) = oo]dy is positive, (See

(w - ¢)2

section 10 of reference 8.) Calculation shows that Kl(c) is almost

always negative (equation (3.11)); therefore, in general, the sonic
disturbance of infinite wave length (a = 0) with constant phase
across the boundary layer exists only in the inviscid fluld (R—> ).

d [w'
If — |—] does not vanish for any value of w> 1 - }—, it
dy \T 7 = M
a (v

is certain that [% (E_)] < 0 and by equation (L.15)
A M B

O

3
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¢i<z) 1 >0. When v 7 <0.580 (approx.), there are two
“e=leie- - -

M M

.0 : o ‘ .
values of z (zo and zy, say, with zj > z,) corresponding to
the value of &;(z) glven by equation (4.15). (See fig. 9.) Along

the two saymptotic branches of the curve of a azainst R forr the
neutral disturbances, «, R, and c¢ aro comected by relations

of the form of equations (4.16) and (4.17), with z and u replaced
by z, and wy, respectively, along the lowor branch and by Z3

and Us; regpectively, along the upper branch, At a given v&lue of
the Mach number, the value of v 1 18 controllad by the thermsl condi-
Vi
‘o

tions at the solld surface. (See section 6.) Whon these conditions are
such thet v ., = 0.580, then gz = 22 and the two =symptotic branches
l-.—.

M
e}

of the curve of « againét R for the neutral disturbences coin-
cide. When v 2.0.580 (spprox.), it is impossible for a
1=t . .
M,

neutral or a self-exclted subsmonic dlsturbance to exist in the

leminer boundary layer of a viscous conductive gas at any value of

the Reynolds number. In other words, if v ; 2>0.500 (approx.),
l--—' — o

M,

the laminar boundary layer is stable @t all values of the Reynolds

number. {Of course, in any given cage, the critical conditions

beyond which only dampod subsonlc disturbances exist can be cal-

culated more accurately from the relations (2.28) and (2.29).

See segtion 5 on minimm critical Reynolds numbeor,)

The preceding conclusion can also ve deduced, at leest gualita-
tively, from the resulis of & study of the enérgy balance for a
neutrel subsonic disturbance in the laminar bowndary layer. A
neutrzl subsonic disturbance can exist only when the doestabilizing
¢ffect of viscoslity near the s0lid surface, the damping offect of
vlscosity in the fluid, and *the encrgy transfor between mean flow
and disturbance in the vicinity of the Inmner "critical layer" all
balance out to glve » zero (average) net rate of change of the
onergy of the disturbance. (Sec Schlichting's discussion for -
incompressible fluid in rofercnce 4.) In roferencs 8 it is shown
that the sign and magnitude of the phaso chift in wx' through
the imner "critical layer™ at w= ¢ is detormincd by the sig
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and magnitude of the quantity Fw (L)] . ~The .correspond:ang, :
— ay \T S
W=C -
apparent shear stress T * = -p* w*'v¥', which is zero for v ¢ c. .in the

iin*'iscid compress‘ble i‘luid is glven by the i‘ollowing expreasion
for w > ¢ (reference 8). L )

ror = T (T S u (W )3 Ldy : >] R

If the quantitv [ (,_.] — 1s negative, the mean flow absorbs
ay :

energy from the dlsturbance; if [ ( -->] is pos itive, energy

papges from the mean flow to the d.isturban\,e. In the real com- -
prossible fiuld, the thickness of the Irmer critical layer in which
1

the viscous forces are impordant is of the order of PN and

the phase shift in u*' 18 actuslly brovaght cbout by the Pﬁects

of viscous diffusion (of the guantity p%‘ri) Yhrough this layer

Ls showm by Prandtl (referehce 12), the Jdestabilizing effect
of viscosity nesar the solid swrface 1s to shift the phase of the
"rrictional™ component up X! of the digturbance velocity against

the phase of the "frictionless" or "inviecld" camponent uy,*'

in a thin layer of flwid of thicimess of the order of
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reference 8, that for large values of oR the "frictional”
components of the disturbance also satisfy the continuity rela-

: us! - Jy*r P
tion memee + - ='0 In the compressible fluid.) The corre-
ox* ' Jdy* . ' : :

sponding a@parent shear stress’ Tl* = -pl* ukfy¥' ig given by the
expression

v & T3 (TH2
T, = oor (U ¥ (1.20)
But from equations (2.11)
u, %t T T
. 1
. "i—'{'l;) s el N REe B e
: ub* 4 Tl - Mb c. c |
and
(k.22)

Since the shear stress asgoclated with the destabilizing effect
of viecoslty near the solid swrface and the shear stress near the
critical layer act roughly throughout the same region of the fluid, ths
th .

o %
ratio of the rates of cnergy transferred approximatelg"[ T* EB_ dy*
- N ‘ M

0
by the two physical processes is

37
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" ‘,. - L ,,,,,‘: 2 - -
B * T * aw'c T, 2
B I R S ()} 3/  (h.23)

. El* 3 ,‘Tl-):- 2 Tl (W

- 2 I | 32

where

3 "R 03

P a....- o i~ ——

Yo ()"

e — e s

when W = Cqs say, the the rate at whlch enerJ is gbsorbed by

the mean flow near the imner "critical layer" plus the rate at which
the enerzy of the disturbance is dissipated by viscous actlon more
than counterbalances the rate at whidh enorgy passes from the mean
flow to the disturbance because of the destabilizing effect of
viscosity nesr the solid surface. Consequently, a neutral subsonlc
disturbance witlh the phise velocity ¢ ,}: 1 does not exist; in

‘fact, all subsonic disturbances for which ¢ > cq ars damped.

When MO <1, there is slvays a range of valuos of phase veloclty

B %

c
——1{, given by equation (4.22),
El* . ,
is smll enough for npeutral (2nd self -exc:ﬁced) gubsonic disturbances
to exist for Reynolde numbers greater than & certaln critical value.
When M, > 1, howover, becsuse of the phycical reqrircmont

0L eL e, for vhich the ratlo

—r—

that ¢ > 1 - % > 0, the possibility oxints that for certain
o

thermal conditions at the solid surface thé quantity [3-5 (—%’-)]

¥*
E(‘

is slweys sufficiently large nogatively (and thereforec |=——| 1s

b
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sufficiently large) so that only damped subsonlc disturbances exist

w'
at all Reynolds numbers., Of course, if %}(E?. vanishes for some
“value of w2 1 .., 1t is certain that v{c)< 0.580 for some
M,
range of values of the phase velocity 1 - %? <c g_co. In that
)

case, neutral and self-exclted subsonic dlsturbances always exist

for R > Rcr s and the flow is always ungtable at sufficlently
min

high Reynolde numbers, in accordance with Heilsenberg's criterlion

ac extended to the compressible fluid (soction 2).

A dlscussion of the slgnificance of these results s reéerved
for a later section (section €) in which the bohavior of the quen-

t
tity <%;(%;- will be releted directly to the thermal conditions

at the golid surface and the free-strsam Mach number.
5. CRITERION FCR THE MINIMIM CRICTICAT, RTYNOIDS NUMBER

Tho obJect of the stability analysis ls not only to determine
the general conditions under which the laminar boundary leyer 1s
ungtable at sufficlently high Reynolds numbers but also, if posaible,
to obtain some simple criterion for the limit of stability of the
flow (minimum critical Reymolds mumber) dn terms of the local
distrivution of mean veloclty and mean temperzturs across the
boundary layer. For plane Couette motion (linsar velocity profile)
and plane Poiseuille motion (parabolic velocity profile) in an
incompressible fluid, Synge (reference 13) was able to prove
rigorously that a minimum critical Reynolds number actually exiests below
vwhich the flow is gtabla., His proof applies algo to the laminar boundary
layer in an incompressible fluld, with only a slight modification (refer-
ence 5, part ITI). Such a procf is more difficult to glve For the laminar
boundary layer in a viscous conductive gas; however, the cxistonco,
in gonsrel, of a minimum criticzl Reynolds numboer can be inforred
from purely physical comsidoraticns. A study of the cnorgy balance
for small distwrbances in the laminar boundary layer shows thet the
retio of the rato of viecous dissipction to the rate of enorgy
transfer near the critical layer is 1/R for a disturbance of
glven wave longth while the onergy traznsfer associated with the
destabllizing actlon of viscosity ncar the solid swrface bears the

ratio 1/{5- to the enorgy transfor nocr the critical layer. Thus,

39
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the effects of viscous dissipation will predominate at eufficiently:
low Reynolds numbers and all subsonic dlsturbances will be damped,
The two distinct asymptotic branches of the curve of a agesinst R
for the neutral disturbances at large Reynclds mumbers muet Join
eventually (section 4) and the flow 1s stable for all Reynolds
numbers less than a certain critical value,

An estimate of the value of Rérhﬁnf vhich will serve as a
stability criterion,is obtained by taking the phasse velocity o
to lave the maximm possible value ¢y for a nevtral subsonic
disturbance, that is, for ¢ > ¢, &all subsunic disturbances are

demped, Thie condltion is very nearly equivilent to the condition
that oR he a mlnimm, which wvas employed by Lin fox the case of

the incompressible fluid (». =85 of roference 5, part III). The condi-
tion ¢ = ¢, cccurs when i&(z) 1 & maxinmum} that 1g, when Qi(z) =0.58,

2o = 3.22 and ®r<zo) = 1,48 (fig. 9). Tho corresponding value

of ¢ = c, can be calculated from the relations (2.19) to (2.22),
Teglocting terms in A2 () 1is uswally very smoll) end teking u=1.50
- &lves

g;(z) = [1 - ()] v(e) (5.1)
whero
wn'e e a /v 1
v(2) 5 o e formme — [ — ] (5.2)
1 f(w)3 ey \r /]
W=
end
Vl' yc :)']
(e-v) (5.3)

It 18 only necessary to plot the quentity (1 - 2\)v agusinst ¢
for a zlven laminer boundary-laver Tlow -nd find thLo velue of ¢ = ¢
Tor vhich (1 - 2\)v = 0,580, The correspondins value of of i
determined from the relation ' -

e
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@ T (0 () s

and this value of oR 1is very close to the minimum value of oR,
A rough estimate of the value of o for c = c, 18 glven by the

following relation (equation (2.27)):

a wl’co\ﬁ - Moe(l - 00)2 (5.5)
This estimated value of a is;, in goneral, too small., The
following estimate of R, 1 is obtained by meklng en approximete
min

allowance for this discrepancy end by taking round mummbers:

25_LT(C°)]H6. o (5.6)

Cryin ;Ohvl _ Mog(l - Co)2

or

o B (%)

Recrm 1 (5.7)
n ,
c, P‘Jl - M (l - co)2

For zero pressure gradient, the slope of tne veloclty profile st

the swrface (—-—) ig glven very closely by (appendix B)
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9 8

Therefore

o .
R I (5.8)

B8
Crmin Tl b 2 2
| col-Mo(l-co)

o

The expression (5.8) is useful as a rough criterion for the dependence

of R@ on the local distribution of mean velocity and mean
crmin
" temperature acrogs the boundary laver, It is immediately evident
that Rg = ——>w vhen cy—31 - . When [(1 - 2\)v] >0.5%,
crm.in . I\JIO C=l- L—
M,

the laminar boundary layer is steble at all values of the Reynelds
number, (This condition is an improvement on the stability condi-

tion v 1 > 0.58 (approx.) stated in section &.)

l-—
M,

Tn the following tables and in figures 5 and 6(a) the estimated
values of Ry or glven by equation ?) 8) can be compared with the
min

valuwes of RQ . taken from the calculated curves of g against Ry
Tmin

Tor th: noutral distuabancas, Tor the Insulated surxdco, the values

are
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Rg
M c (e CTmin CTmin
© © ( 0) (est.) (fig. )
0 0.14186 1.0000 195 150
.50 . 100 1.0L08 170 136
.70 , 4600 1.0782 150 106
.0 . 4850 1.125h 129 115
1.10 .5139 1.1803 169 104
1.30 , 5450 1.2L06 92 92

For the noninsulated surface vhen M_ = 0.70, tho values are

~ R R
T, 5 T (co) _ ® Cl'min 6 Crmin
(eat.) (fig. u)
0.70 0.1872 0.7712 5377 5150
80 L2619 L8716 1463 1:40
.90 . 339k L9562 52k 523
1.25 .5194 1.1hk9 8g 63

gives the correct order of
Tmin :
magnitude and the proper variation of the stability limit with Mach
muber and with surface tempsrature at a glven Mach number. T

The exproession (3.8) for ROC

The form of the criterion for the minlmmm critical Reynolds
number (equetion (5.3)) and the results of the debtailed stability
calculations for soveral ropresentative cnses (figs. 3 and 4) show
thet the distribution of the product of the density and the

vorticity pg—; acrogs the b61mdary layer largely determinés the

limits of stability of laminar boundary-laysr flow., The fact that
the "proper" Reynolds number that sppears in the bovndary-layer
stability calculations 18 based on the kinemitic viscosity at the
inner critical layer (where the viscous Fforces are important)
rather than in the fres sbresm also enters the problom, dbubt it
amounts only to a numorical and not a qualitative change when the
usval Reynolds number based on free-stresm kinematlc visccelty is
finally computed. Whethor the value of Rgcrmi for & given

n

h3
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leminay boundary-layer flow is larger or smaller than the valus
of Rgcr for the Blasius flow, for exarple, is determined
min ’

a
entirely by the distribution of p—z across the boundery layer,

If the quantity g; \pgg 18 negative and large near the solid

swface 80 thet the quantity (1 - 2\)v(c) reaches the value 0.580
when the valuc of ¢ = ¢, 1s less than 0.4186, the flow is rela-

- d a
tively more stable than the Blasius flow., If theo quantity E} (;5§>

18 positive near the solid surface, so that (1 - 20)v(c) = 0.580

vhen w(or c) > 0.4186, +the flow is relatively lese stable than

the Blasius flow. Thus, the question of the relative influence

on Recrmi of the kinematic viscosity at the imnor critical layer
n

and the distribubion of pgg acrosg the boundaryilayer, which

remained open in the concluding discussions of refersnce 8, is now
settled. :

The physical basis for the proedominsnt influvence on Recr .
min

a .
of the distribution of pag acrosg the boundary layer lg to be

found in a study of the eﬁefgy balance for a subsonic boundary-layer

disturbance (section 4). The dlstribution of pg? detormines the
: Vg

maximum possible value of the phase velocity €y Or the maximm

possible distance of the immer critical layer from the solid surface
for a noutral eubsonic disturbance. The greater the distance of
the imner critical layer from the solid surfacé, the greater
(relatively) the rate of cnergy absorbed by the mean flow from the
disturbance in the vicinity of the critical laycr (oquations(k.21)
and (4.22)). When ¢, is large, thereforo, the encrgy bslance
for a neutral subeoni¢ disturbance is achieved only when the
destabilizing action of viscosity ncar the solid surface is rola-

2
tively large or, in other words, when ———éé::: = 003/ is lexpe

Ry

o}
v o)

o
_and the Reynolds number By, which is very noarly oqual to Rop . 3
min
is correspondingly amall, On the other hand, when Co 18 small
and the inner critical layer is close to the golid swrface, the rate

L
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at which energy ie absorbed from the disturbance near the critical
layer is relatively small and the rate et which energy passss to
the disturbance near the solid surface, which 1s of the order

of -—mEL—, 18 also relatively small for energy balance; conse-

[ A
UC

guently R is large.

Crmin

6. PHYSICAL SIGNIFICANCE OF RESULTS OF STABILITY ANATYSIS

a, General

From the results obtained in the present paper and in refer-
ence 8, it 1s clesar that the stability of the laminar boundary
layer in a compressible fluid is governed by the actlon of both
viscous and inertia forcss, Just as in the case of an incompressible
fluid, the stabhility problem cammot be understood unless the viscosity
-of the fluld is taken Into account. Thus, vhether or not a lamlnar
boundary-layer flow is imatable In the inviscld cempressible

fluid (R-»»), +that ig, vhether or not the product of the density

and the vorticlty p;--;;:I hag an extromm for some value of w> 1 --;——-,

[}
there 1s always some value of the Reynolds number Rcrmiﬂ below

which the effect of viscous dissipation predominates and the Tlow
is steble. On the other hand, st very large Reynolds numbers the
influence of viscosity is destabillzing., If the free-stream
veloclty is subsonic, any lemlnar boundary-layer flow is unstable
at safficiently high (but finite) Reynolds nunbers, whother or not
the flow is stable in the inviscid fluid vhen only the 1nertia
forces are considered

The action of the inertia forces is more decisive for the
Btability of the laminar boundary layer if the froe-stream veloclty
18 supersonic. Because of the physical requircment that the rela-
tlve phase velocity (c - 1) of the boundary layer disturbances

must be subsonic, it follows that ¢ > 1 -37-> 0 and the quan-

4

o]

4 / aw\ |
tity [é; (pi;)! can be large cnough ne@atively under certaln

V=G
conditions go that tho stabilizing action of the inortia forces

b5
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near the imner critical layer (where w = c¢c> 0) 18 not overcome
by the destabllizing action of viscosity near the solid surface,
In that case, undemped disturbances cannot exdist in the fluid, and
the flow is stable at all values of the Reynolds mumber.

Rogardless of the free-stream velocity, tho distribution of
d
the product of the density and the vorticity pag- acrosg the

boundary layer determines the actuwal limit of stablility, or the
minimum critical Reynolds number, for laminar boundary-layer flow
in a viscous conductive gas (ecquation (5.83)). Since the distri-

bution of p:-j;ri across the boundary layer in twm is determined by

the free-stream Mach number and the thermal conditlons av the solid
surface, the offoct of these physical poramsters on the stability
of laminar bowndory-leyer flow ism readily evaluatsd,

b, Tffect of Free-Stréam Mech Number and Thermsl Conditions at
Solid Surface on Stability of Laminar Boundary Layer

The distribution of mean velocity and mean temperatwre (and

dw .
therefors of pé; acrogs the laminar bowndary layexr in a viscous
r

conductive gas 1a strongly Influenced by the fact that the vigcosity

of a gag increases with theo hemporature. (For most gases, o e
(m = 0,76 for air) over a fairly wide touperaturs rangs.) When
heat 1s translerred to the fluid thirough the solid gurface, the
temperature and viscosity near tho surface both dscrease along tho
outwerd normel, and the fluid ncar the surface is merc retarded by
the viacous shear thean the fluid farther out from the surface - as
compared wlth the lsothermal Blasius flow., The velocity profile
thorefore alweys posscsses a point of inflection (where W' = 0)
when heat 1s added to the fluid throush the solid surface, provided
there 18 no pressur? gradient in the ddroection of the main flow,
i 7 it ; '
Since 3;.(%%2. S E T2 the quantity -9--(pgz
dy \ &y,

—
iy \Car 7 0 vanishes

dw _ . . .
and p&; nhas an oxtremim at scme point in the fiuid. On the other

hand, if hcat ls withdrawm from the flutd through the solid sur-

P 3
face, — end :E- arc both positive near the swface and tho
oy oY

fluld near the swurface ig less retardced than the fluid farther

46
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out - se compared with the Blasins flow. The velocity profile is
therefore more convex near the surface than the Blasius profile.

As pointed out in section 11 of reference 8, the influencs
of the variable viscosity on the behavior ¢f the product of the
dsnsity' and the vorticlty pg-'lr can be geen directly from the cqua-
, ¥

tiQns of motion for the mean flow. Vhen therc¢ is no pressure
gradient in the direction of the main flow, %the fluid acceleration

vanlehes at the solid surfacse. or

— - A ”
O EES e
¥ b3 Nad

Iy 1 LV VAN o

and

) 20023

Thus, when heat is added to the fluid through the solid swrface

2
o ux
(Tl' < O) ( ) 1s positivs, and ‘che veloci. ty nrofile is concave
" near the aurface and posgesges a point of inflection for somo valus

Qe

of w> 0; when heat is withdrawn from tho fluld ("‘1' > o) li‘..)

1
13 negative, and the velocity profile is more convex near ‘me swface
than the Blasiug profile

The behavior of the quantity i -_-_-_ e du~
W \

~ 2-—- .
u¥ .

From aquation (4. 2), in nondimensional

parailel to that of
. Ay

¢

forn,

b7
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[ ( )] dJ(‘")] '1 L (6.3)

Differentiating the dynamic equations once and making use of the

. " d
enerzy equation gives the followlng expression for [-—; (—)}

(appendix D):

2 : . - . ! 3 . |2
d (w = ofm + 2)(y - l)Mo2 (—TJ-L—)—- + 2(m + 1)° w, (E%-z (6. 1)
1

Thus, for zero pressure gradient, [ ( )] is always positive.

1
. ) o
‘distance from the solld surface. Since -5’» —30 fer from the solld

: _ N
Now, if the surface is insulated,the quuntity E—i“m é—’——)] venishes,
& 1
a® [ a [w' W'
but f—{—1J} >0 and - (-—- and ~=- Thoth incrnase witl*
ay \T 7 \T T o

'

surface, %—- has 2 maximm and -— -——) vanishes for some value
of w >0, If heat 1s added to the fluid through the solid sur-

Yad
face (Tl' < 0), -(-1-—(-;-) is alre=dy positive at the surface, and

dg W' d / !
Bincoe = { - >0, the quentity —{-—-] vanlshes at a point
" \r /1, ay\r/

in the fluid which is farther from the swrface than for an insulated
boundary at the same Msch number (figs. 3{a) and (b)). Conse-
quently. the value of ¢ = ¢ o for which the function

L8
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Y 2 )
(1 - 2)v(c) = - n{(1 - 20) lr}-.i [..L- 4 l‘..)] resches the
RN ICID RN S AV

value 0.580 is larger than the value for the insulated swrface,
By equatior (5.8), the effect of adding heat to the fluid through
the solid surface is to reduce Recrm.in and tc destabilize the

flow, as compared with the flow over an Insulated surface at the
same Mach number (fig. 6).

If heat is withdrawn from the fluld through ther solid surfacs,

. ] .
Tl' > 0 and [g—:— (%—-)] is negative, In fact, if the rate of heat
2
. . . a fw'
transfer is sufficlently large, ths quantity Eyb . does not

venigh within the boundary layer (fig. 3(b)). The value of ¢ = cg

for which the function (1 - 2A)v(c) reaches the value 0,580 ieg
smaller then for an insulated surface at the same Mach number, and
by equation (5.8), the effect of withdrawing hest from the fluld

through the solid surface 13 to increase Rec"fmin and to stabllize

the flow, as compared with the flow over an insulated swrface at

the same Mach number (fig. 6)., When the velocity of the free stream
at the "edge" of the bowndary layer is supersonic , tho laminar
boundary layor 1ls completely stebilized if the rate at which heat

ig withdrawn through the solid surfacc reaches or exceeds a critical
velue that depends only on the Mach numbor, the Reynolds number,

and. the properties of the gas. The critical rate of heat transfer

!
is that for which the quantity %-—(%—) is sufficlently large

J
negatively noar ths surface (soc oquation {6.3)) so that

(L - 22)v(c) = 0.580 +vhon ¢ = Cp =1 - ﬁ-— (scctions 4 and 5).

. - " o}
Althcugh deteiled stability calculetions for supersonic flow over
a noninsulated surface have not boen carricd out, the function
(L - 2v)v(c) has beon computed for noninsulatod swefaces at
MO..—_ 1.3, 1.50, 2.0G, 3.00, and 5.00 by a rapid zpproximate method

(appendix C). The corresponding estimated valuss of Recr were
nin

calcwlated from cquation (5.8),.and in figmwe 7 these values are

. plotted agninet Tl’ the retio of surface temperature (deg abs.)

to free-stream terperature (deg =bs.). At any given Mach number
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greater than unity the value of Rg Tyin increagses rapldly

_ : . 1.
ag ¢ -—-)l - ;&—-; wien Cy differs only slightly fram 1 - ﬁ-

the stability of the leminar boundary layer ls oxtremely sensitivo
to thermal conditions at the solid swrface. At each value of M, > 1,

thore is a critical value of the temporaturc ratio Tlcr for

vhich Rg —e, If T{$T) , tho laminar boundary layor is
Crmin - Ter .
stable at all Reynolds numbers, The differonce between the
stagnation-tomperature ratio and the critical-swiace-temporature
ratio, which is relsted to the hoat-transfer coefflclent, is plotted
againet Mach number in figure 8. Under froce-flight conditions, for
Mach mumbers groatsr than scme critical Mach number that dopends
larzely on the altitude, the value of Tg - Tl is within the

order of magnitude of the differencce between stagcmtion temporature
and swface btemperature that actuslly exists becauso of heat redia-
tion from the surfacc {references 1k and 15), In other words, the
critical rate of heat withdrawal from the fluld for laminar sta- . ]
bility 15 within the order of magnitude of the calculated rate of
heat conduction thrcush the SOlld surface which balances the hecat .
radiated from ths swrface wnder equilibrium conditions. Tho calcula-
tions in eppendix E show that this critical Mach number is approxi- -
nately 3 at 50,000 feet altitude and approximately 2 at

100,000 feet altitude. Thug, for M, > 3 (approx } .at 50,000 feet
altitude and My > 2 (approx.) at 100,000 feet altitude, the

laminar boundary-layer flow for ti Lexmol equilibriwm is completely
s’gr ble in tho absconce of an adverss prhssurc grqdient in the freo
goroeam,

Vhen ther: is actuzlly no heat conduction through the so0lid
swrface;, the limit .of stabillty of the laminsr boundery layer
depends only on the frec-stroam Mach nuwuber, that is, on the extent

of the "acrodynamic heating" (of tho order of uy ¥ ( near

the solid swrface. A good indlcation of the influence of tho froe-

aw
stream Moch number on the disgtribution of pd-\li across the boundary
-

layer for an Insulatcd surfacoe ig obtalned from o rough estimate

of the location of the point at which E—- {.)d'—-w roaches a positive

dy

meximm  (or —~—- ( ) vanlshes), Diffcrentiating the dynamic
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equations of mean motion twice and making use of the energy and
continuity equations ylelds the following result for an insulated

suwrface:
l.d ( ) _{___)__ o (6.5)
D m 2
where b = B From equations {6.4) and (6.5) the value

d fv' .
of ¢ &t which -~ ——)} vanishes, or -—{~—} reaches a maximm,
d:-- d\Y T /

1s glven roughly for a* r by

o 1 () |
T owf\e /)l m?® M 2

o]
o = 2 ) | . (6.6)

[fl /N mRE (1 0,205 2) 12
3 \m .

b{0.3320 : .
in which w' = —i——‘é—-—) (eppendix B). TIn other words, ths point
Tl
in the flwid a% which / ‘i) taing & mmrrmm moves farther ouvt

from the surface as the Mac mmbeYy is Increzsed - at lsast in the
range 0 < M, < 4.5 (approx.); therefore the velue of ¢ for

sl i
which —6-'—- . vanishes and the value of ¢ = ¢_ Ffor which
dr \T / o .
(1 - 2)v(e) reaches the value 0.580 both increase with the Mach
numbsr (fig. 3(a)) By cquation (5.8), the value of R@ © for
Cmin

the laminer bmmdary-l ver f‘low over an inculzoted swrface decreasss
a8 the Mach number Increases and the flow is deatabillzed, as com-
pared with the Blasius flow (fig. 5).
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¢. Results of Detailed Stability Calculations for
Insulated and Noninsulated Surfaces

From the results of the detailed stability calculations for
several representative cases (figs. U4 to 6), a quantitative
estimate can be made of the effect of free-stream Mach number
and thermal conditions at the solid swrface on the stability of
laminar boundary-layer flow. For the insulated swrface, the value
of Ry is 92 vhen Mo = 1.30 as compared with a value

CTpmin )
of 150 for the Blasius flow. For the noninsulated swurface
at My = 0.70, the value of Recrmin is 63 when T; = 1.25 (heat

added to fluid), Rgcrmi = 126 vhen T; = 1.10 (insulated sur-
n
5150 when T; = 0.70 (heat withdrawn from

face), and Ro.,.
min

fluid). Since R,y = 2.25Rg%, (the value of 6

is proportional to the skin-frictlon coefficlent, differs only
slightly from the Blasiug value of 0.6667) the effect of the thermal
conditions at the solid surface on Rx* is oven more pronounced.

The value of Rx* is 60 X 106 vhen T; = 0.70 and M, = 0.70;

';s compared with a value of 51 X 103 for tne Blasius flow

and M ) For the insulated swrface the value

01 Rx\(. d.eclines from the Blasius value for M, = 0 to a

Crmin }
va]ue of 19 x 103 at M, = 1.30. Tho oxtreme sensitlivity of the

lmlt of stabliity of the lanrinar boundary layer to thermal condi-
tions at the solid surface vhon Tl <1 1is accounted for by the

fact that ¢, 1s small wvhon Tl <1 and My <1 (or M, is not

much greator than umty) and Re —E (equation (5.8)).

Small changes in c¢,; therefore, produco large changos in Recr .
min

In addition, when Ty <1, small changes in thoe thermal condltions

. ) t
at the solid surface produce appreciable changes in %‘y—— (%——) (equa-
tion (6.3)) snd, thercfors, in tho valuo of c,.

Not only is the value of Rg crmiA affected by the thermal
n

conditions at the solid surface and by the free-stream Mach number
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but the entire curve of o against Ry for the neutral dis-

turbances 1s also affected. (See figs. 4(k) and 4(1).) When the
swrface is insulated (and Mb ¥ 0), or heat 13 added to the fluid

(Tl = 1.25\), Qg —> Cg 7! 0 as Rg—> o along the upper branch of
the curve of neutral stability. In other words, there is a finite
range of unstable wave lengths even in the limiting case of an
infinite Reynolds number (inviscid fluld). Howover, a-——>0

a8 Rg-——» o for the Blasius flow, or when heat is withdrawn from

the fludd. Thils behavior is in complete agreement with the results
cbtained in section 4 and in reference 8.

A corperigon betweon tho curves of ag against Ry for
Ty = 1.25 and T; = 0.70 at My = 0.70 shows that withdrawing
heat from the fluid not only stabilizes the flow by increasing Recrmin
but also greatly reduces the range of unstable wave numbers (;9)'
On the other hand, the zddition of heat to tho Tluld through the
golid swrface greatly increzses the range of unstable wave numbors,

Tt showld alse bo noted that for given valucs of dg, ¢C,-
and Re_'tha time frequencios of the boundary-layer disturbances
in the high-speed flow of a gas are considerably greater than the
frequencies of tho familiar Tollmien waves obscrved in low-speed
flow. The actual time froquency n* exprossed nondimensionally
is as follows: ‘ B

For givén values of ¢, %s @nd Ry the freduency increascs as
-the square of the froe-stroam velocity.

d. Instebility of Laminar Boundary Layer and
Transition to Turbulent Flow

The value of Recrmi obteinod from the stebility analysis
in ‘

for a given lamlnsy bowndary-leyer flow is the veluc of the Reynolds
nmber at vhich sclf-cxcited disturbsnces flrst eppear in the
boundary layer. Az Prandtl (reforencoe 12) carefully polnted out,
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- these initial disturbancee are not turbulenco, in any sense, bub
glowly growing oscillatlons. The value of the Reynolds mumber at
vhich boundary-layer disturbances propamated along the surface will
be smplified to a sufficlent extent to cause turbulencs must be

larger then Rg in any case; for the insulated flat-plate
“Crmin :

flow at low specds and with no pressure cradiont, the transition
Reynolds number ‘Retr 1s found to be tiwreec to seven tines as

large as the value of Recrmi (references 6 and 7). The value
n

of Retr depends not only on Recrmin but aleo on the Initial

mrgnitude of the disturbences with the most "jangerous” frequencies
(those with greatest amplification), on the rate of amplification
of these disturbances, and on the physical procsess (z8 yot unlmown)
by vhich tho guasl-stetionary lzminar flow is finslly destroycd

by tho amplified oscillatiovns. (8ce, for oxample, references 16
end 17.) The rosults of the stabillty analysis ncvertheless permit
certaln gencral stetements to be made concerning tho offect of
froc-ghrosm Mach number and thermal conditions at the solid surface
on transition. The basis for those statemonts is sumarized as
fol.love: ' ' s

(1) Im many problems of technicsl intorest In acronautics the
1ével of frec-strecm turbulence (magnitude of Initial disturbsnces)
- '1g sufficiently low sc that the origin of transition iz always o
bo Pound in the instability of the laminar boundary laycr, In
othor words, the value of Recrmin je an absolutc lower limit for

transition,

(2) The eifoct of the freo-stream Mach numbor and the thermal
conditions &t the solid surface on the stabiliby limit (Rgcrmi )
n

is overvholming, For exsmple, for M, = 0.70, tho value of Recr s
min

vhen Tqp = 0.70 (heat withdrawn from fluld) is moro then 80 times
as great as the valuo of when Ty = 1.25 (heat added to

fluid).

(3) The maximum rate of emplification of the solf-oxclted
boundary-laycr disturbances prepagzted along the swface varles

v e

roughly as 1 ;’\Agcrmin.

the mumericul results obtained by Pretsch (rofércnce 18) Cor the

cago of an incommresaible fluid.) The offuet of withdrawing heat

from the Tluld, for cxample, is not only %Yo incrcasc Recr L and
: : Cmin

(This apyroximation agrces closely with
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stebillze the flow in that manner but also to decrease the initial
rate of amplification of the unstable disturbances, In other words,
for a given lovel of free-streem turbulence, the interval

between the Tirst appearance of self-excited disturbances

ead the onget of trarsitlon is expected to be much longer for a

relatively stable flow, for which Recrm; is large, than for a
' n

relatively wnstable flow, for vhich Recrmin is small and the

initial rate of amplification is large.

On the basis of these observatiocns, transition 1s delayed (Ratr

increased) by withdrawing heat from the fluid through the solid
surface and is advanced by edding heat to the fluid through the
solid surface, as compzred with the insulated swurface at the same
Mach number. For the insulated surface, transition occurs earlier
as the Mach number is increased, as compared with the flat-plate
flow at very low Mach numbers, When the froc-streom velocity at
the edge of the boundary layer ie supcrsonic, transition never 7
occurs 1f the rate of heat withdrawal from the fluid through the
solid swrface reachos or oxcecds s criticzl value that depends
only on the Mach muibor (scction 6b and firs. 7 and 8).

A comparison botwoon the rosulte of tho presont onalysis and
moaswrencents of transition is possible only when the froc-stroam
Pressure gradicnt is zero or i1s held fixed while the froc-stream
Mach nmumber or the thermal conditions at tho so0lid swrfaco are
veried. Liepmenn and File (reforonce 19) have measured the move-
mens of the transition point on a flat plate at a very low free-
stream velocity when heat is applied to the swrfaco. They found
by meens of the hot-wire ancmomotor that R’%t dcelined

“tr

from % % lO5 for the insulated surface to a valuc of approxi -

mately 2 X 107 for T) = 1,36 when tho lovel of frec-stroam

(w1 L
~-—- we8 0,17 percent, or to a valuo of 3 X 107

turbulence

o 2 . - ‘ . )
vhen Izﬁfilu = 0.05 percent end Ty = 1.40. Tho value of Rp
(557)° . =
declines from 470 (approx.) to 300 (approx.) in tho first case and
to 365 in the second,

Frick and McCullough (reference 20) observed the variation in
the transition Reynolds number when hoat is applied to the upper
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surface of an NACA €5,2-016 airfoll at the nose gection alone, at

the section Just ahead of the minimm preaswre. statlon, and for

the entire laminar run, When hegt is applied only to the noso

gection, thoe transition Reynolds number (determined by total-prespgure-

tube measurements) was practically uwnchanged. Near the nose, :

Ry <<ZRecr and tho strong favorable pressure gradient in the
min :

rerion of the stagnatlon point stebilizee the laminar boundary layer

to such an extent that the additlon of heat to tho fluid has only

g negligible effect. When heat is applied;however, to the section

Just ahead of the minimum pressuro point, where the pressure

grodlents are moderate, the transition Reynolds mumber Rétr
declined to a valuo of 1190 for T ~ 1.1%, - compared with 2 value

of 1600 for the insulated surface. When heat is epplied to the
entire laminar run, Rg,., dsclined to a value of 1070 for T = 1.1k,

Tt would be intoresting to investigate experimentally ths
ptobilizing offect of & withdrawal of heat from the fluld at super-
sonic velocities. At any rate, on the basis ol the results obtained
in the exporimontal investigations of the éffect of heating on
transition 2t low specds, the results of the gtebllity analysis
¢glve the proper direction of this effect,

7. Stability of the Laminar Boundary-Layer Flow of a Gas with a
Progssure Gradisnt in tho Direction of the Froo Strean

For the case of an incompreesidle fluld, IPretsch (roference 9)
has shown that even with a pressurc gradient in the direction of
the frce stroem, the local mean-velocity dtstribution across the
boundary laycr completoly dotormines the sbabllity cheracteristica
of the local laminar boundery-layer {low et large Reynolds numbers.
From physical considerations this gtatemont should apply also to
the comprossible fluld, provided only the gtehility of the Ilow
1n tho boindary layor is considered and not the possible intor-
action of the voundary layer 2nd the maln "oxternal® flow, Furthor
otudy 1s roequired to settle thie question.

If only the local meon velocity-temperature distribution across
the boundary laycr is found to be significant for leminar stability
in o compressible fluid, thoe critcrlons obtzincd in the present
peper and in rofercnce 8 ars then immediatoly appliczble to laminar
boundary-laysr gas flows in which thore 1s a frce-strcam pressure
gradicnt, The quantitative offect of & pressurc eradient on laminar
gtability couwld be readlly dctormined by msans of the approximato
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2  du.¥
& 0

In a reglon of smz1l or moderate pressure gradients| {—== g;E,
V¥ dx

say) the‘distribution of p&§> ig sensitive to the thermal conditlons

at the solid surface. For example, the chordwise pésition of the
point of instability of the laminar bouhdary layer on an airfoil
with a flat pressure distribution 1s expected to be strongly influ-
enced by heat conduction through the swrface. (See reference 20.)
For the insulated surface, the equations of mean motion yield the
Ffollowing relation (appendix D), which does not involve the preesure
grafient explicitly: '

n )3

as & : Y1
Z \/p_‘.> R R (7.3)
ay= \dv, N - Ty

The effoect of "aerodynanic heatingf at the swrface opposes the
effoct of a favorable presswe gradient so far as the distribution

of pgz across the boundary layer is concerned (equations (7.2)

v
anéd (7.3)). The relative quantitative influsnce of these two effects
on laminar stability can only be settled by actual calculatlions of
the leminar boundary-layer flow in a compressible fluid wlth a free-
siream pressure gradient. A method for the calculation of such
flows over an insulated surface is glven in reforence 22.

When the local free-stream velecity at the edge of the boundary
layer is supersonic, a ncgative pressure grodient can have a decisive
offect on lamlinar stability. The local laminer boundary-layer flow
over an insiulated surface, for oxample, 1s expectsd to be completely
8table vhen the megnitude of the local nemtive pressure gradilent
reaclieg or exceods a critical value that deponds only on the local

Mzch number and the properties of the gas. The critlcel magnltude

of the progsure gradient ls that which makes the quantity &, pg?i
3

sufficlently large negatively nesr the surface so that

2

w'e | T a /W

1

- [1 - 2)\,(0)] Py - . ....<,.;..> = 0.580
| 1 (w3 ar .

W=
1
WHONL C = 1 = ==,

M
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‘estimate of Re ot - (equation (5.7)), in terms of the distribution
n

-

of the quantity pi—i-: across the boundary layer. Such calculations

(unpublished) have already been carried out by Dr. C, C, Lin of
Brown Univ_ers‘ity ‘for the incompressible fluid by means of the
approximate estimate of Rgyx - . given in reference 5, part III.

In ah,jr event, the qualitative effect of a Proe-stream pressure

gradlent on the local distribution of p:-—;-: across the boundary

layer 1s evidently the same in a compressible fluld as in an incom-
pressible fluid. If the effect of the local pressure gradient alone
1s considered, the velocity distribution across the boundary layer
18 "fuller" or more convex for accelerated than for uniform flow,
and conversely, less convex for decelerated flow. Thus, from the
resulta of the present paper the sffect of a neyative pressure
gradient on the laminar boundary-layer flow of gas 1s stablllzing,
go far as the local mecan velocity-temperatuwre distribution i1s con-
corned, while a positive pressure gradlent ls destabllizing.  For
the incomp¢ossible fluid, this fact is woll ostablished by the
Rayleigh-Tollmien critcrion (rcference 3), the work of Holsenberg
(reforence 1) and Lin (refcrence 5), end a mass of detailed cal-
culations of gtability limits from the curves of a against R
for the neutral disturbances. These calculations were rocently
cerricd out by soveral Georman Investigators for a comprehensive
sories of pressure gradlont profiles. (Sco, for example, rofer-
onces 9 and 21, )

Some 1dea of the rclative influence on leminar stability of
the thermal conditions at tho solid swrfaco and tho froo-stream
pressuro gradient is obtained from tho equations of moan motion.
At the surfaco,

5??) cu*) '7 dug¥
e = |- = -p u u* 1
(53 1 [ (l 9y ] dx @

or

[é o aw m y:l;; '5;' ) l. 52' dug* (7.2)
J—— —— T e e mre— W - 'r .
dy dy 2 171 mel =

1 Tl Tl 90 ax* v |
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Tt has already been shown in the present paper that when MO >3

(«pprox.) the leminar boundery-layer flow with a wniform free-stream
velocity is completely stable under frse-flizht conditions when the
golid swrface 1s in thermal equilibrium, that 1s, when the heat
conducted from the fiuid to the surlace balances the heat radiated
from the swrface (section €b). The laminar boundary-layer flow

for thermal equilibriwma shovld be campletely stable for M, > Mg,
gay, vhere Mg« 3 iT there ig a negatlive pressure gradient in
the directlion of tho free stream. Favorable pressure gradients
exlat over the forward part of sharp-nnsed eirfoils end bodies of

revolution moving at supersonic velocities, and the limits of sta-
bility (Re'pr ) of the laminar boundary layer should be cel-
““min

culated 1n such cases. .
CONCLUSIONS

From a study of the stability of the laminaxr boundary iayer '
in a compresalble fluild, the followlng conclusions were reached:

1. In the compreasible Tluid as in the incompressible fluigd,
the influence of viscogity on the leminar boundary-layer flov of
a gas is destabilizing st very large Reynolds numbers. If the
free-stresm velocity is subegoniz, any leminar boundary-lsysr flow
of gns is unstable at sufficiently high Reynolds nubeors,

2, Regerdless of the frec-stream Mach mmber, if the product of

. da dw
the mean density and the mean vorticity has an oxtremm [ — ( p-—

o]
dy \ &
vanlches for some value of wd> 1 - Y«I_ (whero w 1is the ratio of

(o
mean velocity component parallel to the swrfece to the free-stream
velocity, end vhere M, is the frec-stream Mach nmumber) the flow

ie unstzble at sufficiently high Reynolds mumbers.

3. The actuzl limit of stability of laminaxr boundary-luyer flow,
or the minimm critical Reynolds number Recr ;13 determined
min
largely by the distributicn of +hs product of the mean density and
the mesn vorticity scross the boundary layer., An approximate
estimete of Ry 1s obhained that sorves as a critorion for
Crpin
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the influence of free-stream Mach number and thermal conditions at
the solid surface on laminar stebility. TFor zero pressure gradient,
this estimate reads as follows:

s _ [2EI"

3 =n

Cryin L]

o t\1 - ME(1 - o)

vhere T 1s the ratio of témperature at a point within the boundary
leyor to free-stresm temperature, T, 1s tho ratio of temperature

at the solid surface to the free-stream velocity, and Cy is the

value of ¢ (the ratio of phase velocity of disturbance to the free-
stroam velocity) for which (1.- 2x)v = 0.580. The functions v(c)
and A(c) &are defined as follows:

e
LYol 23 /1w

Y

V(C) = s e |t —
Tl S 3 on \T On
, -
W= C
oW
/1,
r(c) = —
¢
where
) nondimensional distance from surface

%, On the basis of the stability criterion in concluslion 3 and
a study of tho equations of mean motlon, the effect of adding heat
to the fluid through the solid surface ls to roduce Recr and to
min

€0



NACA TN No. 1360

dostabilize the flow,'as compared with the flow over an insuwlated
surface at the sams MackL number. Withdrawing heat through the
solid surface has exactly the opposite effect. The value of Recrmin

Tfor the laminar boundary-layer flow over an insulated surface decreases
ag the Mach number increases, and the flow 1s destabilized, as com-
rared with the Blesius flow at low speeds.

5. ¥haen the free-stream veloclty is supersonic, the laminar
boundary layer 1s completely stabilizad 1T the rate 2t wlhich heat
is witadrawm from the fluid through the solid surface reaches or
exceeds a certain critlcal value. The critlcal rate of heat transfer,
E d dw
—30 he hich mokes the quantity —- [p—
. o, 1 that whic o y 5 \Pay

sufficiently large negatively necar the swrface so that

for which Rp

‘ 1

[; - ex(c)] v(c) = 0.580 when ¢ = ¢y =1 i Calculations for
o)

several supersonic Mach numbers between 1.30and 5.00 show that

for MD > 3 (approx.) <he cribtical rate of hea® withdrawal for

laminar stebility is within the order of masnibtude of the calculated
rate of heat conduction through the solid swfaco that balances the
heat radiated from the swrface under free-flight conditions.

Thus, for M, >3 (apprex.) the laminer boundary-layer flow

Tor thormul equilibrium is completely stable at all Reynolds numbers
in the abscace of a positive (adverse) pressure gradient in the
Girection of tho free phreanm,

6. Dotalled calculations of the curves of wave number (inverse
wave length) against Reynolds mummber for the neutral boundary-layer
disturbances for 10 reprecontative cases of insulated and non-
Insulated swfaces show that also at subsonic speceds the gquentitative
offcet on stebility of the thermal conditions at tho solid surface
1s very large. For example, at a Mach number of 0.70, the valuec
of Ry 1s 63 when T, = 1,25 (heat added to fluid), Ry = 126

CY . 1 GC_'.’\

Somin nin
vhen Tj = 1,10 (insulated surfece), ond Ry = 5150 when Ty =0.70

Crmin
(hoat withdrswn from fluid). Since Ry* = 2,25R;, the effect
on R is even greatcr. "
Crmin

7. The results of the enalysis of tho'stability of laminar
boundary-layer flow by the lincarized method of small perturbations
must be applied with care to predictions of transition, which ig a
nonlinear phenomenon of a different ordoer. Withdrawing heat from the
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fluid throush the 5olid surface, however, nct only increases Rg

Crmin
but decreasos the initial rate of amplification of the self-excited
disturbances, which ie roughly proportional to l/\RQC 3 addition

Tmin
. [
of heat to the fluid through the solid surface has the opposite
effect. Thus, it can be concluded that (a) transiticn 1s delayed
(Retr increased ) by withdrawing heat from the fluld 2nd advanced by

‘adding heat to the fluid through the solid surface, &s compared with
the insulated surfacoe at the same Mach number, (b) for the insulated
surface, transition occurs earlisr as the Mach mumber is increased,
(c) when the free stream velocity is supersonic, transition nevor
occurs if the rate of heat withdrawal from the fluid through tho
golid surface reaches or exceeds the critical value for which
Ry,p | =P (See conclusion 5.)

min

Unlike laminar instebility, transition to turbulent flow in
the boundary layer is not a purely local phencmenon but depends on
the previous history of the flow. The quantitative effect of thermal
conditions at the solid surface on transition depends on the existing
preseurs gredient in the dirvection of the froe stroaim, on the part
of the solid surface to which hect is applied, und so forth, as
well es on the initial magnituds of the disturbences (level of free-
stream turbulence), ) ,

A comparieon between conclugion 7(a), besed on tho results of
the stability analysis, and experimental investigatlons of the
effoct of surface heating on transition at low speeds shows that
the results of the present paper give the proper dlrection of this
eifect. -

8. The rosults of thc present study of leminar stability can
“be extended to Include laminar bowndary-layer flows of a gas in
vhich therc igs a pressure graddent In the directlon of the froo
gtream. Although further study is requiroed, it 1s prosumed that
only the local mean velocity-temperatwre distribution determines
the stabllity of the local boundary-layer flow, If that should

be the case, the effect of a pressure gradlont on laminar stabllity
could be easily celculated throush its effect on tho local distri-
oution of the product of mean density and mean vortlcity zcross

the bouncary layer, ’

Vhen the frec-strezm velocity at the "edgo" of tho boundary
layor 1s supcersonic, by analogy with the stabilizing offect of e
withdrawval of heat from the fiuid, it 1s ocxpected that the lemlnar
boundary-layer flow is completely stable at all Reynolds numbers
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vhen the nesptive (favorable) pressure gradlent reaches or exceeds
a certain critical value that depends only on the Mach number and
the properties of the gas. The leminar boundary-layer flow over a
gurface in thermsl squilibrium should be completely stable for

MO >>Ms, gay, where Mg «< 3 if there is a negative pressure

gradient in the direction of the free strean.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronzutics
Langley Field, Va., September 5, 1946
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APPENDIX A
CALCULATTION OF TNTEGRATS APPEARTNG IN THE INVISCID SOLUTIONS

In order to caleulate the limits of stability of the laminar
boundary layer from relations (2.21) to (2.29) between the values
of phase veloclty, wave number, and Reynolds mumber, it is first
necessary to celculate the values of the integrals K:L’ Hl, Hy,

Ny, M3, N3, and s¢ forth, vhich appear in tho epressions for
the inviscid solutions (pl(y) and q)e(y) and their derivatives

at the edge of the boundary layer. These Integrals are as follows
(equations (2.13), (2.9), and (2.10)):

I2
- c)?
H (C) = .(lr-qa-pii._.d‘y
1
1241
m’v
I VI CU
Kl(C) == e m——
. (v - ¢)®
1
1N
) 2q . Moe(w - ¢)? fy (v - c)2
Ny(c) = KjHy - K, = k 2 dy A dy = H,(c)
o W -2
U7y Jyl
NSo Ny ﬁ
\ ‘ (W-C)Q f T -I'IOC"(W—C)Q i (W—C)é
Mo(o)= By - By=| ——edy ‘ — & |
7 T b (v-c)® , T
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N3(c) = KyHy - Xy

VY I
2 T-Moe(w- c)® W (o c)? ° T-I\‘IOE(W-C)‘Q
= - dy e dy T dy
Iyl (W - C)a : ¥y o0 4 Y ¥ (W- C)

and so forth.

Terms of higher order than o in the sories expressions
for 'cpl end Do arc noslected, Vhen o< 1, the erxror Iinvolvad
o
1s emall because the terms in the series decline like =~ HEven

for « >1, howover, this approximstion is Justiflod, at least for
the values of ¢ +that appenr in the stabllity calcwations for
the 10 representative casces sclected in tho presont paper. TFor
example, the leading term in R.P. Nop,1(c)y where k=2,5, . .,

i} 3 k-1
“1s approximately -l—' S multiplied by the lealing torm
kD L3(1 - o),
in R.P, N3(c). The quantity in the brackets is at most 0.12 4n
the prosent calculations; for exemple, R.P. 5.(2) = 0.06 R.P, ()
4 -
Morsover, R.P. NEK(C) = (1 - ¢) R,P. Nﬁk.tl(c)' Similer spproximate
relations exist betweon R.DP. My(c) and R,P, I"’S(c); and, in
3

addition, R.P. My(c) = (1 -¢) I-m.>, I'5(c) = 0.015 R.P. Ny(e),
0D . . .
at most,

The only integral for whiich the s sinary part is calculated
is Kl( c). At the end of this appondix, it is shown that the con-
tributions of the imaginary parts of Hp, 3, omd Ny ars
negligiblo in somparison sdth the contribubion of T.P. Kl(c) .

General Plan of Calowlation

The method of calculatlon adopted must toke inde accommt the
a dr )
fact that the value of 5: (p-—-) at the point ¥ = Yos vhore w -
V' g

s
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strongly influences the stability of the laminar boundary layer.
Accordingly, the integrals are broken into twc parts; for example,

vy | Y
K;(c) = I ey | I M2
(w - ¢)? (v - ¢)<
hik by 4

- 8]
Kil(c) + Kyo(c) - M "

, d /dw
where Y5> 7,- The Integral Xj;(c), which involves E&} pd—a;)] ;
- W=C

is calculated very accurately, whereas KJ_E(C) iz calculated by a
more approximzte method as follows:

I

T
Kle(c) = . E’;_ C)Edy : (1)

This integrel ig evaluetod as a power sories in c. The
velocity profile w(y) is approximated by = parabolic arc plus =
straight-line segment for purpoges of Integration. In the more
complex inteograls Hp, M3 ;  and 1-33, the indefinite inte-

oy ' :17p
grals e Gy and

(w - ¢c)*
73

T

Y are evaluated by 21
(w - c)“ o

o2 41 point numerical integration by means of Simpsbn's rule., The
values of w(y) are read from the velociiy profiles of figures 1
and 2, The value.of Yy-vyp=2a 1s 0.4 in tho present seriss of

calculations; this velue 1s chosen so that the point y =3 3 is

never too close to the singularity at ¥y =¥, Take

“\yJ
| (2)
Jry (v - ¢)”
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Y
m
. 4
The integral XKyy(c), or the indefinite into-wal -Fr—~«37 oy
w o)
Al

that appears in HE, Mé’ and Né’ is evaluated by expanding the
Integranrd in a Taylor's series in ¥ - ¥y, and then intesrating the

serles term by torm., The path of integration must be taken balow
the point ¥y = y. in the complox y-plene,

Instead of calculating the values of the velocity and tempera-
ture derivatives wc(n) and Tc(n) directly, 1t is simpler to relate

these derivatives %o thelr values 2t tho surizco by Teylor's secriles
of the form

wb(n) - Wi(n)'+ Wi(n+l) (yc - yl) bt (ﬂc - yl)Q + .

AY P
The derivatives a2t the surface wl(n’ and Tl(“) are calevlated
from the equations of meen motion (appendix B).

The integral Kﬁl(c)' for exsmple, is finally obtained as a
power series in Jo =¥ = ¢ and in yj -V, & ~0, plus terms
involving log 0. The phise velocity ¢ ie related to o Ly

wherea
i ()
"

. 5 - .
Terms_up to the_oraor of &~ arc retained in crder to include all

torms involving VIViR
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Detailed Celculations

In order to illustrate the method, the ovaluation of %( c)
is given in some detall, as follows:

(1) Evaluation of Xj(c):

ﬂyg .
K, (c) = RS T | g
7 (v - ¢)?
(a) Define
AR
E
Kll(c) = t “'2 dy
dry, v -0
Now
T T
= 53 o,
(v - o)? (7, - yc)“f
where

”

v :
c c

wiy) = 1+ (‘J B Ay
2w, ' c 3wt A7 T e

T .
The function -y is doveloped in a Taylor's gcrios around the

point w= c as follows:

T /7 TN ', ¥4 "Q:ﬁs’i
& o8y \ye @ -7e) yay o e '
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where
U = 1
“!c"
Wc'=;—-,
2w
c
(k+1)
e
(k + 1)w !
Then
¥y-¥ )
o5 [T e e G
o ("’c) (Y To)? |\¥5 (=79 U2
and
1 T r-d
SRR Y NL/EY
U | 1 [BREHE (J )
Ji

1 /7 ey o /1 -
' 156?) [.(yJ ") - (% ""'"c)} e
(o]

1 T \(1{-4-1) X 1
+ ‘65‘(_1:;?)_('»&) [(}'J - .‘f“c) - (Yl - yc) ]+
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where
Y =V, = [3’1 - Vg |e'i“
7y Ten (7T < () e e
O=7Jc - ¥y
2 \(8)
The coefficlents (:p-é are expressed in terms of derivatives

of T and v at y = yl a8 follows:

Define
/i \K
1 1 /7
£.(y) = (f—> K >2
(k - 1) X! (w')®\¥2
P
£ (y) = = —=
° (wt)?
1 T\ % a4 A
£(y) = —=(—5) = - o —{—
(v') = \¥ (w')” ay \T
Then

: P -
£ = - v
e (ve")2(x - 1kt Qr) e

(v
XA VI CARES R e CORE VIR

TO
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. - . .. .':"\1 <.‘ . ) { B
(The method adopted for the calculation of - £y (n) (yl) from the

velocity and temperature deriva'bwoa vy (9 ang 'I' (9) is given
at the end of this appendix.) ' o

From the expression for Kll(c)’

I.P. Kpy(c) = I.P. K (c)

:tfl (yc)

H

5 1fe \ g_. s v {
b1 [fl(ylj + O‘fl (Jl) + v e e P 2 1 (yl)j

and

R.P. Ky, (c) WS o

+

i

i
o
wde
HO
Q
.
mo
Q
A
KR
o
Q

+ of '(yl" i - _..3-?-—\“-«-—» + . s
)
P e
720 |
where
=% "N
fo(k+l){y ) 1
Cre = 8 + -—(~E~+ l;-,—-— -y :f‘o(yl) 0<k<5 (85 = O)
8, = 2(3’1) + & f‘3(y1> a fL(vl) & f5(yl\ oa ftSkyl) +

7
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8y = afa'(yl) + aaf3'(yl) + a3fh'(yl) + a.hflj’(yl)'# P
[Eaf (yl) + 3a fl;(yl) + haJ <y1> + a (yl) ]
8 =—21— [éfe"(yl) + a2f " l) + a.3‘c‘lr (y]) ]

- [eaf3'(yl) + »3a2fh'(yl) + ha3f5'(yl) o ]
+ [3afh(yl) + 6a?‘f5(yl) + 1053f‘6(yl) ., ]

R S O R O R B e O N A

+

}afu'(yl) + 6a2fs'v(yl) +.. ] - { l'ra'f5(yl) + lOagfé(yl) e J

1

g [y [ e ] Py ]
- I:hafs'(.‘/l) + :I + [5af6(yl) + }

k

A
T+
dy = _}" - 4, & = 1.0
—1 (r + 1) %7 °
(k)
W, )
A.K=--=-—- a = 0.40
w. ! .
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(‘b)r'.Define
r,
ve
T
Klg(c) = p dy
Ay (w - c)=
7
1,0 T '
= Qv - 7,
Jo.no (w = ¢)f -7)
[82]
k
= ak(k + 1)c
X=0
where
1.
0 T 1(
fe | )
0.0 v

The velocity profile w(y) i approximeted by a parsbolic arc
in the intervel O0.M0L y - Y14 ¥, -7, 8l by a sbraight line

= ant = w(y he interv: -3 -y .C.
(w = Congtant W("3)) in the interval ¥y 78y -¥ g0
The value of :,'3 ig detormined oy Imposing the condition thet the

area wder the parabolic-ars gtraiiht-line seyment squals tho area
under the actual velocity profile w(y) in the intorval

0.b0< ¥ - 1 < 1.0. The parabolic zre w=1 + m{y - yl) +n(y - yl)z
ig determined by the following conditions:

when y:yu< 1,
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li

vhen ¥ yd and yJ - ¥ = 0.40,

=%
[

V()

where w(yd) is road off the velocity profile of flgures 1 and 2,

The value of 7, is chosen so that the rarebolic arc fits the
velocity curve w(y) closely over the widest possible renge,

For ¢ = l,

~
h)
(3]

7‘1 r_’
T:Tl-[(Tl-l).-—-—é. IOJ'W'..

Therelfore

8= 1 (Teo* Tz ) - KTl -1)- ](Ik )+ T - ~ 3,20+ )
vhere

3™ oy - )

L

I I o i
0. 40 7

-k

=

and

Th
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I, 1is evaluated by approximating w(y) by a parabolic arc 28
followss T T
S ¥aT
I 1, \ﬂ-m-Qn(.’Y-Jl) 3
. \ff VZ+ n + .:n(y - J].)J
T 0.50
.- m-+ Qn(y -F “"73-5,-1. ~ )
1 ! ) L 2k-3 4(-n)

Ik= ) (k-fi)A E+m(y-yl)4-ﬁ(:f:3f].)é}k-l 0.40 o 8

where A = m° - hin.

Ag a control in the calculation of The seriles expression
[or)

Z ay (1) & for K ,(c), use is made of tho fact that, from

k=0
the definition of Ik and Jk,

N R
2 (Tt ) - STCAY

and therefore

m 5 )"‘“i

The remainder after N - terms in the series for X;s(c) 1s given
approximately by

[

5
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EH + 1) tern]

)

The real part of Kl(c) is obtained by combining the results
of (a) and (b); that is,

. -
Ky;(c) + wl'c] +‘ K12(C) - Moe

R.P. K;(c) = R.P.

(2) Evaluation of Hl(c):

The integrand of this integral is free of singularities in the
reglon of the camplex y-plans bounded by ¥ = 1 and ¥y = Yos

therefore H,(c) 1is evalusted by purely mumericel integration. The
actual proce&ure employed for the calculation of integrals of this
type is as follows: (The integral Hy(c) serves as an illustra-

tion,)

(a) Define

b b \b

2

pwﬁ dn-2c | pwin+ c g dn

0 1o} 0

El( c) =

Lo

where
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and

(b) With the approximation that the viscosity varies linearly with
- the absolute temperature, the velocity w 1s the same function of
the nondimensional stream function § ag in the Blasius i‘low, ‘that

is,
we v (8)= w(0)

vhere { 18 defined by the relation af = pw an (appendix B).

From these reletions

n /) In-1 et
since af = Wy dng.  Moreover,

af

=4

= i % \. &
d.’r} . (g ) T ( UB/ 7".8

wvhere

T(WB) = L(T - l) Ly “] Vi - -7-—2:-—3; MOQWBQ

for o = 1.
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(c) Finally, from the relations glven in (D).
b b,

N :
Hy(c) = T v~ dng - 2¢ wy dng + ).
\Uo 0

vhere b, is the value of -—— for the Blasius flow, For

the insulated surfaces, b,, vhich is somevhat arbitrary, was
chosen as 5.60; whereas for the noninsulated surfsces, by = 6,00,
(The value of wp at ny = 5.50 1s 0.9950; vhen np = 6.00,

Wy = 0.9975. The velue cf b for the inswlated surlaces is the

value of n at vhich w = 0.9950; vhereas b Tor the noninsulated
surfaces is the value of n for which W =‘O.9975.) The advantage
b
o -
of thils procedure is that the integrals anénB are calculated
4G
once and for all.and the value of Hy(c) depends only upon the

values of b and c. In fact,

bo
z
cr = e - D
Voo OGNy b b, - 2. 3967
x*
3
gince
| i
5 _a-u«‘?-—-\ = 1,730
vo-)(- x’/B
and
| ot
QV:':—'—— ',’ =4 00666?‘
hY : o Mf{g
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Also,
.‘bO
0
and
Ndb by
b = dT] = T d.'i]B
VO 0

| o 7 - 1 2
b, + L.73(Ty - 1) + 0.6667 Lt i

2

H

il

- J , y - 1
b, + 1.73 [(Tl - J.) - ?-:2~- MOQJ 12,3957 Ll MOQ

See appendix B. (Incidentally, the lust relation shows the effect
of free-stream Mach number and thermal conditions at the solid
surface on the "thiclness" of the boundary luyer,)

(3) Eveluation of HE(C):

REE S VT I 1 (v - ¢)2
He(c).—. —; Ay e Ay
¥y (w - b) = A dyy T
h's
Jo J ) > 2
T (w-c) o v - c)
= == dy e Ay - My e 4y dy
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Define
Yo y 2
T (w - c)
Yo (WY 2
W - C
2
f, yl yl

(a) The integral II22( c) 1is evalusted by methods similar to those
already outlined for the evaluation of Hl( ¢). Thus

Jo NV o
W - C
J1 Iy -
1Yo 7 T 1o Ny
= dy pr'irdy - 2c dy | pwidy+c dy o dy
Wl VYL Jv W1 71 A1
o {"ﬂg b, VB s
=;~ T cqu ' V5 dr;B—’c'?c T dng Wy dnptC TnB Ny
Jo oo Jo do Uo
vhere
2 7y -l.,2 2
T 'I' -[(Tl-l)-—w-—wnt }B—“QWMOJB

The nine integrals in the expression for Hp 2( ) are svaluated Dby
numericel integration using Simpson's rule.
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() Define
J2 Y 2
. Wwa-c
p (0)= L -9 oy
J1 (W - c)'— IrAL T ’
(A
g N
J T w-C e 2 T W~ 2
N B S Y R AL i P ) AL
yal (w- 0)2 ¥ T gy (W-c)2 vy T
Define
leJ J (W 0)2
Hell(c) = o r—— a_y 8 vt s i =
i r (‘W - 0)2 T
1 l;yl
.:1'2 ’ J e
T [7 -
B ()= | I ay] ool
12 (W' - ,,)2 J T
73 ; J1
The integral Hgle( c) 1is evcluated as follows:
N b
2
; T -
Anarnt, HQlQ(C) = — s iy d;,‘ g.i....s.l... d_y'
y,j (V' - 0)2 v.L T
T Tec -
] J TP B 10 S - SR e P g
N (w-c)? 1 T Uy (- ¢)? y T
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But
Yo D ‘
T &y = Kp(c)
(w - c)
I3

and

~(-Y.-¢.-—-?-)-— iv = Hl(c)

T
¢ yl
go that
3"2 m Y.a (W . 0)2
&
(o) =K, (c) Byc) - | —ommemg &y | e iy
HQle 2 L (w - 0)2 T
T3 Ay

Define

Yg m

P(c) = e Gy ©) Ay
lyJ (W - C)
ND

T
L e G173 €)dn

b2 (0. 4b (3 - c)”

82
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whereo
b 2
G(n; c) = QEJLJQ_-dq
7
b 1¥s) k!
1\"2 w P d.T]
= - - 2¢ —dn + ¢ —_
T T
M M yn
and

The integral P(c) is oviluated by mmericzl intesration using
Simpson's rule; the required values of w ere read di rectly off
- the velocity profiles of fimres 1 and 2, Tinclly,

HEJQ(C) = Kyo(c) Hl(c) - P(c)

The integral H911(c) is evaluated in exactly the same way

as Ky;(c) vhere

Lo oy e (£ )

W f','

viy) =1+ .e_.‘i.; (v - .Y (J ) .

W
C

(]
it
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R.P. [Hell(cy] (% o2 e’ + a ah + noa5)

. 2 3 oo, 2 3 el )
. c(?la + cq8” + &8 - Qabo - JaTc, - ha a, - Samg

2f, .o 3 2, 3, L 2 3 \
+ 07 (b2 + coa” - 2ab; - 3a ¢, - ha dy - -% + 3acg - 6a d+10a no,
3 2 2 PO 2 e .2
+ O (%38 - 2ab, - 3ac, + 3acy + 6a dl + p, - had - 10an  + ag

L -
+ 0 (} eab3 + 38C, + Py - haal + g, + Beng + ah)

oo L) 2 s oot 2 o 1
e 1 36 ‘a~013 7.(v1) j

a5 L) 2 56 TE (vlﬂ_

4
v

— e - — - owr  mam

+ ln("’;“' \ fo(yl) [ (\J ); b fo(y ) 3f /yl)

where

wh—t‘*\ ‘
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b _G{* . ff% (') _.f3('yl)_
' 3%4(71)

BR fg(yl)fo’(yl) 1 fo(yl) < > 1% (1)

3 [fo(fyl)}e 3% (.‘fl>

1)

£,
27" %9 fo(.‘flj fo(:;;j— J 9 fo(b’lj ;O(yl) BT fo(ff;'j—
1 Hi(7) fo“(yl.) 1 [ Ty Tl" T I Y
" 18 fo(yl.j fo(yl) T L"" T T MT—;. 2<-T-;'>

1 f?(ﬁ) 1 f1(5’1) ’\ 1 [Be 2 Ty T <'Pl' 2:'
T

o o —r—

07" le(;y) l6f(yl) 40"” "3'3 2'1‘ T
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Ty,
T
n r4
Ty Ty
- ciome. e Lo —-
T, T,
11t
Ty
- i
T,

T“‘ TlﬂTl 1
5 - — -
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B Tt D" T, N
1
L[ Zay e QG_.
e 1 N 1
1 _‘321 Tl' Tl" Tl' 2 Tl”'
ql_--——--+-—A3 -EAE'-—--QA2~—-—+2A2 -
10 | 2 Tl Tl Tl Tl
. " Ty u<Tl’ 3

2 f3(-’7'1) 1 fE(yl)

‘Tl"
AR (yl) EE (yl) G"‘ '51">
1 fl(yl) Bg R Tyt T" <Tl'>2
-— =t —A, - 24 - + 2

e P
SN TN B
RO

o ( )it [ -
) @)
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(x)

.
by = —
gt
i TS Ml S | | 2LkS6

o
A
w
HiA
w

oo v to_At
R i

Loty u - - T ", L : '
e = Aa[k 28 Ak' Ae’\k 2§_.1{<:L
iv N .
A s Ak+l' B R n_ - '{!\2“ Pengt AL k=2, 3
AT = A, - HOA I‘n' - 61‘ "” - LA TIA Y LA ivf’ k=2
k 1 k il. o kT Tk s
B (m) A (m) (1) 2g ks 6
"t 7 Tkl
ol mgl

&
H
‘;:

%

4=
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Byg = Ah,
Finally,

R.P. Eylo) = B.P. By (c) + Wy (o) —Mgﬂge(c)

(4) Tveluation of M3’(c):

¥ ' 1 - ~
2 (w-c)® Ve T s v (v - c)? ]
M3(C) = i semtstee. QI ...........‘..,.._2 - MO - ey - oy
T o ) T
WYy y \(¥ - ¢) / dyy T
M. (c) = M, (c) « M 2 (c)
Lled = My My
vhers
' v Ny
2 2 2 , 2
M) = | - s e LI e VR0 o
(w-c)% T
71, v ks
and
2 Yo NV
2 2 2
- : c
(¢) = .(..H_E_E.)._. ay . (w )"'dy, ay
71 vy



NACA TN No. 1360

(a) The integral M32(c) i5 evaluated in much the 8ame way
as Hea(c); that 1is,

bp(0) = v Onp Twg  dnp dng
Jo g VO
% 2 o fing | "o o 1B
- 2c i dnp TwB d‘h'.B dnB+ Vi dng Twy~ dng qu
0 UMy U0 : 0 tnp VO
, g b, nng . b, b,
+c dng Twg dnB d.nB+ WBQ dng |+ Tng dng
Jo R Jo 8
+ b W, dng ‘ Tey dng dng, - Z¢ vy dng | Tng dng
0 imp U0 / B
b, b, png . b, b,
+ dng Twy dng dng |+ © dng TnB dng
vo np YO Jo Ynp

vhere D, has the same meaning as in the evaluation of H22(c)
and wvhere

T = T(WB) =Ty - [(Tl - 1) - Z";""].’Moe] hi: Y - ; - Moang
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The integrals in M32(c) are evaluated by numerical intesration

using Simpson's rule, Values of Wy are taken from the table in
appendix B, ' SR

(b) For convenience, the integral M3l(°) is transformed as
Tollows: '

M3l(c) = M3ll(0) + 1\4312(c) -VM313(C)

where
g o [y Y
v (w-¢c) - ¢)?
Mg ()« | S 1T o9
1 T (w c)2 T
U1 ¥ - Wy
17 5 V2 7 2
M,. (c) = (v - ) . dy L ay (v - o) o
31, T 2
Y. r
(v - c)° T -
My, (o) = ay | ey | o)l g
.73 (v - ¢c)@ T
YJ LYJ . J1
It 18 recognized that
¥
2
2
w-c
(_.-a,-l'- ) d;}' = Hl(C)
)51
Ny ths n
2 T (w - ¢)=
S Loy -, (o)
Y3 (w - c)= Jr T =

!
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Therefore

M312(C) = Hl(C) 53212(0)-

By additlonal transformations, the following equations are obtained:

M313(°) = 31(05 P(c)'- a(c)

vhere
B 5 1y P o
Q(e) = (v - o)7 dy —_ dy (v - <) ay
73 g (v - 0)2 T
or
b n b
2 : ‘ 2
1 - -
Q(c) = ...5 QL—E?.—. dn r I d‘n_ gl-(_—-.c_)—... \
> Jo.tn T doww (w-0)2 Jy T

The integral Qc) i evaluated by numericel integration
using Simpson's rule; DP(c) 19 evaluated in the calculation
of Hpo(c).

The integral M311(C) is obtained in exactly the same way
as Kij(c) and Hell(o); that is,>?



NACA TN No. 1360

1 a5 ah o) a3 L a
R.P. I‘I (C) = - —— — 2 c ——
313 Tfo yl) U5 +a 5 " o 5 + 0 3

3 3 [ £(n) :
v a 2 2 l, R ANS!
+ 3fo(5i) 3 +ga” + 0 %) LFa 5 + fo(yl) In (a - o)

Finally,
R.P. MB(C) = R.P, 1-43ll(c) + Hy(c) Hgie(c) - p(c)] + qc) - MOQM32(°)

(5) Zvaluation of N3(c):

'y SUR P
2 ’ 7T,

v- T - 2 2
1\!3(0) = ’\ [ ~__§ - MOE] dy ! .(.H_,..?_)... dy ___?‘___ -—M02 dy

(.yl (v - c) dyl T Uy (W - C)2

tp

2 J2

My(c) - j —F gy r (v- 2" a3 e E gy

yo(w-02  Jy T . (w02

¥ AT T (W;" c)“
NI ¥
L (v - ¢)°
+ M e -~ -
OJ a - (7o - 7) &
I Y1
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Tt can be shown that the eecond and third integrels are identlcal;
therefore ,

m(e) = Nap(e) - 247za(c) + . i, (o)

vwhere
Yo y n 1Yo
- - o) T
N3l(c) = — oy S oy ay
(v - c)? + (w-2c)°
Uy Uyl
Jo J
L= 2
T w-C
N39(c) = 1\?33(0) = — dy (yg - 3) ( -_)..... dy
) ) N (W - C) hig T
U7 ¥
J J
. 2 (v C)E
T le) = ay | —— (p-7) &
I1 I

(a) The integral N3~4(c) ig avalusted by numericel integratlon

e

in a manner similar to Hl(c), HQ’Q(C)’ and M,o{c); that is,

-~

2 woo? [
, : W c)
Ngu(") = ay —— ay ay
71 I1 ¥
1 b n 0 b b rq b b 1 b
== | | e an| an-zc| ) ewan| ens ®| an| edn| an
b\ 1
go it £n 0 C n
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1 o B %o bo "B o
b i 0 0 8 : 0 Y UT‘B
5 bo B b,
of
+ C T dng dnB T dnB
4o 0 Unp

where.

The ihtegr‘als in N3h(c) are eveluated by numerical integration
" in a manmer similar to that used in the evaluation of M—\e(c), and

80 forth. Most of the integrals will already have been evaluated
in the calculation of Hy(c), Hys(c), amd M 2(c:)

1.2 , r-1..2 2
MOJWB-———-—-Q—MOWB

(v) For convenience, 1\732(0) 15 broken down as follows:

lyg 7 Y ( )
W ~C
N2(0)= dy (ye "y)dy
2
Uy, (v - ¢) 71
R 4 -c) Y2 p (v~ c)?
| e g [ ] e

~)2
L:‘/‘J ('W"La) yl T



NiCA TN No. 1360

Let
N32(c) = N321(c) + N322(c) - N323(c)
vhere
J
J T WV ~CcC 2
. ¥ (w - 0)2 T
1 1
‘ ,yar ) 155 5
T € -c
Nyp () = ——dy | W0 -9 ay
o 2 2 2
yy (w-¢) y T
J 1 '
T W -
Nap,(e) = -~ &y oo o (- 7) &
3 p (w - ¢)* - T
Now,
7. . , ,
2 Jo ”
T (w - ¢)°
N— (C) = P T _.,_...__.._.[-; - V. - - ] -
2. J y Y- ¥, MGy
3 o (w - 0)® l" T (2 l) ( 1)
J Uy
Since yé - ¥y, = 1.0, end
ye :"Q n
P(C) = .....-T dy (W - C) ay
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it is found that

fizp () = 2(c) - By(c)

vhere
Y. \ I
2 _
7 v - c)
P (C) = SR o ‘s L—-. (J’ - y d_y
1 : 1
yJ (w - (.‘)" ¥
1 b T
="'é ('ﬂ: C)dﬂ
b h.l‘, (W - C
~and
_ b ko} , h .
w 2 N 4y
Gqy(n; ) = —n dn - 2¢ —n dn + ¢ —_—
13N 7 ﬂ» T T n an T
n n N
Pl(c) is evaluated by numerical integration using Simpson's rule,
Define
Io I
- T (w - ¢)?
N322(C) = — 2— dy s e e [(Ve - Vl) (y - yl)]dy
U7 (w - e) 1551
Since
Yo

T
— ety = Ky(0)

VLYJ {v - c)“
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and

72 2
(w - c)
T ay = Hl(c)
1
it 1s recognized that
Y2
' (v - ©)2
NBEE(V) = Kple) |5 (e) - — (- 7)) W
I1
T2(y o) . LI L s [
(y - yl)dy-.:;.é olw - C)an dn :-.4-5 plw~ - 2cw+ c )dn dn
Y1 %o 0 b |yo 0
(v 0)2 1 Oy Mg "B 3
(y yl) == W d.qBJ T dng-<c 5y dng T dng
1 b \ o) 0 G

:’?

(W-C)

The integral (y . °l) is evaluated by numerical

71
intesration in exactly the ssme way as N32+(C) .

a8
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The integral 1\13p (c) 1s trangformed a8 follows:
..-l B

73 3 2
T (w - ¢c) .
0 | 5 | 5 e
. .'l - . . ) -

WAl
But
73 J o
T W - )<
oy | Y (o
” T 13
yl (7.'? - C) yl
and
Yg-yc=(y2-;’l -(yc-;l).—.l-o‘
80 that
Tizp (0) = (1 - o)y (c) - Ia,,(e)
where

V4 . y o
T ’1 (w - c)
J. = SRS, L\ DR A £
21 .(c) 4 . (5 YC) dy

2
U (w - e) Jy]_

The integral J5_ (c) i3 evalusted in the scme way as X, (c)
211 7 11

99

Thus
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RRJﬁﬁdﬂgfc{?wo5C%Po]
-of i) 5 (56, e aCa) a6 (yl)} ]
( >£ £ ((ylg (5 £ (Jl; n{ (1) Lf () 1

: 2
o — a3 4+ ah‘CO - a_5DO + O {: R—- - 1;8300 + & 4(5’00 + Cl)]

12

. | 1 2
02 <% + 6a‘£(3O - 1033])0— ha309 + a3 (E - haCo - lOaZDo + 6a Cl>
f 7, :
[ Py + ( ) - h—aCl - "jaDo] + 0'5- <- —56—q0>

vhere

BN P R GY A O
PR UEY) e

q__(_’. i fl(yl) l f?(y];)
6

—

Do = 25f(y Yy Fo Of(yl)

0

100
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Finally
R.P. Ngp(c) - R.P. I!sel(c) + N (c) - N323(c)

(c¢) Defins

o ks o [
¥,.(c) = = . ay (v '...9}.... dy —x ay
3 ( )@ T (w - ¢)?
dyy (v-c . . -

After several transformations, the integral N3l( c) 1a brought
into & more convonient form

N_%l(c) = 1\5311(6) + Klg(fl) [QHQ:L.L(C) + HQJ_E(C)J - 1‘7313(0)

. Where
T (v - ¢)
N 1 (C) = o — —— - d .
- = (v - c)? | T dyJ (w - ) f
N1 wo= el y
¥ Ny ny -
S (v - ¢)2 i
N313(C) ) o o T & %
73 (w - c)= Wy T 47 (v - ¢)*

The Integral N31 (c) 1is evaluated by nwmerical integration

using Simpaon's rule, Scme of the integrations have already beon
performed., The integral 1s glven as

b i

) 2
1 .. .
N313(C) = —— ,._?.......2 d—; g »EL dn —--...'L . dn
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The integral I\T31 (¢) is evaluated In excctly the same vay
-1

as Kll(c); that 1is,

=7, 1)} g [(Pl g fo(y l)

: S Y z fo(yl) * o %Off.‘(yl) 3 *o ("

2 In(a - o)

e ———— . I—PO————

cog(m) - %foﬂ(yl)] } - [inta - )% - =
4

P Fa- e )

&

_*.

. r : 3 ])
{;2 ' fq(yl) +a .Pofo(:fl) + i;-fl(yl)]_ %- E - a?’F‘

L) B - free ne) 1)

+ 8%} »L-—- I‘}+ o3 [Po c( l)" % £ (Jl) - T, (Jl) Z fo"(.'yl) 8(E+1)]

. ) - - : : 1
* °’+[(Pl - qo>fo(_yl) ¥ pofo'(yl) ] Zfo',(yl>:]/

» c2 a3 J. l E
X L P T - —— T {v \ + = -

+ In (a—o){

2 s 3 RPN C1CE) i
vo G— n'(m) g ) -5 TOIM Sy [
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(3 l(yl)+ = fl"(yl)-- £1'(7y)+ - s {; £ (yl) - jflﬁgls] }

+‘§-a29+ o3 l}ofl(yl)- £ ( 1) 3 e(ilzfig l) Z l"(yl) u(D+C)J

- cb' [}- fl"(yl> - Py 'y rl) + (q pl>fl J-L)‘J]

3 o) -2 o) o5, (yl)]+- £() 1m0 (22200 L £6)
-. l‘fo(yl)Po] v (a2 - a)3 {% i‘g(yl) (dl) "= ;——J—Df

(a - )2 -
T 1 O(Yl)q} " jﬂ_ 8 [3 £1'(71) - Meafo (1) - bRty (yl>;
-4

2

] |
- (2 - 5y (5,) - 2. (a - 0)2 1n (2 - c)fl(:-'l)

-~ (8 0)20f (yl) In (a- o)+ fa-o)J n (o - t‘ E_.(Jl)‘]

")

'§f1(y1)1’o}+a.la(§fo(yl)"’[ (,D“if(fl)l’ 5 fl(fl)]

-
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- Uh {Il; £" (y l) * _39; £ (-‘7 1) i E3?E)ofl '(yl) ¥ P.lfo(yl}] + 157 qofO(yl> 4.13;- fe(yl)

9 s Wl)

Lo 1 y Qf y)f'() [G)F
"3 f(T)R J o <_21_ £’ (3”1)“;'{ l(fi)(yl_)(Jl)“ [;1\,3)} fo'(yl%

o1

206 2 B

I . 5
- E‘l 71)py + Pofl'(yl)] R LCED T XA (1)

where

A—gjf/y P ey 'y \]
=3 R 1) 3 RCORRE l(yl.)_J

5(1 o '
R (1) - 25y (v l.-) + (g, - Pl)ll(yJ.)J
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e [ L )

B s merere
3 ]i%a(r) To(72) ()]

BN FRTCEV N ¥ V) R NGV N & Bl
2 fo(yl)J o' () [ (fl)} fo(71) j 3 5o()

[2 fl(h)fl \31} 1 [Rg]” YR E%:iﬂf}
* k13 () [ (vy ] %'(71)" % fo(yl)

b LTy -2 )

oJJ_\ 3 f(y])

2 f1(r )0 (1) 1{1("1)] ()

D= p,fy’ (J1\+Plf1(fl) f (31) 3 fo( )
A RIS (3’ l) * plfo( l) 1 (yl)

F=p.f1(v) + a5 (%) - fe(yl)

Evaluation of fk(m)

The functions fk(m) (yl), which eppear repeatedly in the
evaluation of the integrals Kj(c), I,(c), and so forth, are
evaluated in terms of 1w (¥) ana 7 (X) as rollowss

105
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| Hap
o " "e(k 1)k! k";e> yc* fk(yl Tx ("l}“ *"‘”‘“"“ o?

(m) ) v -1 m(m-1) _ (m-2)
fo " (yl) = ?(Ttﬁo)yl(m) = -E[‘l(m)go +1 ﬂl(m )él nin Tl ot 524'

2!

wvhere

g - 1
2
(‘*’1')
8 = —QgOAQ

& = -E(QOAQ' + "AE\
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(m) /. ( 5,T> @ pg) W, 1m 0 g<ncs
Ty =("’1) e o ( gO)Yl *2(81 >Y1 s

)5 (), B 3 (), @ og=g
where
- (TGOSE)y (m) _ ; [fo :fl)Sn] (m)
L

and
se(k) 2? p,(F) . §A3(k) 0Lxsy
?(m)( l) CP’”'O*'Z-T" \ (III.) (m; ) ( )

[f(f :S] (m) 0<n<s3

173 = ==
J
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where
(x) (k) (x) 1, (¥ < <

53 - 3B, - 13C ?Abr 05x<3
Sk 2, (k) (k) (x) , (k) (1c)
8, = - gAs 1 3Bu : 1?(33 5 2137 0Lk
55(k) = - ‘3"‘“‘6(1{) » (k) RBB(k) - 15C (k)

soc (¥) _ sop (B) _ 5 g (k) 0<x<1

2 e ==

108
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. 2 DU
8¢ = --'-7—[47 + 3Bg + 6310 - ].805 + T 39 - 5008 + 10Dy,

1mc: 15¢ D 205 ¥ 3Lz
g"‘,{.-{-ﬁ,s- )3+-£-;"F2

A.k(m) and Bk(m) are defined ag previously.

N

(%)Y L) 1, (1)
C = SGa -~ B

o, (¥

it

1, (k) - (=
Eéuﬂ AN +l)>

it

Ca(k) % Bﬁ(k) . BB(k) . 31,.(1:+1)>

c (k) . .;1.'_ G’,{(k) _:,'-131 ﬂ(l‘i) - Br-(k"".}“)>
2\ ° 10 5

5

T 7
Cg = Anhohy
p. () _ o (¥ |1, ()
z 3 3



p (9 1 (2%(&) L o9 Ch(zm))

+ 3 2

D'J'(k) - §_<gcé(k) . CY(k) ) C6(1:+1)>

Order of Magnitude of Imazlnoyy Psrbe of Intesrals Ha, M3; end N,
-~ <

Tn the detalled stability ecalculsatlons the contributlons of
the imaginary parts of the inteazrzls 712 M., 113 , &and so furth,
~

to the function v(c) are consigered to be nezliglitle in corparison
with the contributlion of the imsglnary part of Kl( e), A caleulation

of the orders of mamitade of I.P, Fy(c), IL.P.¥(c), end I.2. Fy(c)

from the general expresalons siven in the preceding pages shows that
this step 1s Justlfied, at least for the values of phuse veloclity ¢
thet appear in the stsbllity calculations,

For exesmple,

LP. Hylc) = T.2. Hy (o) = = (1, Yoy (7,)

110
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where
A"""‘?“"" """c“:"" "'}O(C-L) b Y S
3TG W 1)
Therefore
it 03
P, E(c) » - Tfi{y() e
3 .e.lk ’l)

The contribution of I.P. Ho{e) to v(c) is eppreximately equal

-cz, 03 vy 'e '
to v} = wmcoer . vhere v = ~ee I.P. I%( ¢). The quantity in
°l30 (1-: N ° m
S A\ s

the brackets 1g of the order of 0,03, at most, in the calculaticns
of the prezent paper. (In the approximate calculations of Rg

CTmin
for Mach nurmbers very mwch sgroater than anlhy, ¢ becomes large
1
becauge ¢ > 1 - Z- howover, o 18 small when c 18 not mush
1}
o

]
greater than 1 - -~ and the resuits of the calculations of Re o
. ‘40
W'
baged on the approximation wv(c) =

- I.P, I"j(c) are qualitatively
1L
cerrect (fig. 7).)

From the expressicn for N'S(C)’ TP, W (c) & ~memee T.P. K (c),
N 3 Q(W ")2 JL
.1
0o that the contribution of I.P. N3(c) to v(c) 1s approximntely
o)

[»]
£, i
w'c . :

equal. Yo v _ | wewee— |, Thg antity in brackets is of the order

’ 20)%)

of 0.06 at the mosth.

111
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The imaginary part of M3(c) 15 congiderably emaller. In
fact,

6
1.7, M.(c) = == I.P, K, (c)
i3 9r12<ﬁl')2 -

and the contribution of I.P. M (c) to v(c) is epproximetely
J
6 2

-cTa
equal to v, |- .{. The quantlty in brackets 18 of the

2 2
omy° (v )"
order of 0,001 et maximum c.

112
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APPENDIX. B

CATCULATTON OF MEAN-VELQCITY AND MEAN-TEMPYRATURT DISTRIBUTION
ACROSS BOUNDARY TAYER AND THT VELOCTIV AND TIMPERATURE
DERIVATIVES AT THE SOLID SURFACE

The mean-voloclity and mean-temperature profiles for the several
reprogentetive cases of insulated and noninsulated swrfaces are
celeulated by s rapid approxdmnte mothod that sives the slope of
the velocity profiles &t the surfuce with a maxiinm error of about
L percent in the extrenme case, for which Tl = 0,70 and M, = 0.70.

The surface values of the higher velocity derivatives and the
temperature derivatives required in the stability calculations are
obtained directly from the equations of mean motion in “erms of the
calculated value of the slope of the velocliy profile. The Prandtl
nudker is taken as unity. '

Hean Velocity-Temperature Distribution across Boundary Layoer

In a seminar held at the California Tnstitute of Tochnology
in 1942, the prosent author has shown that o zood first approxi-
mation to the mean veloclty distribution across thc boundary layoer
is obteined by assuming that the viscosity varies linearly iith
the ebgolutc temperatwrs. With this caswmption, the velceisy w(f) is

!
the same function of the nondimencional strocam function t = Y

o ot
e —

i

as in the Blesiug cass, and the corresponding distance from tho

gewrface n = y* :‘?ff, ig obtainod by a sizmple quadraturs whoen o= 1.
\' Uoé:-x::- » '

Actually, the approximation w(f) = wy(f) 1s tho Tiret stage of an

1teration procoss applicd to the diffcrentisl cquations of mean

1-€ (¢ ie a amall

motion in the laminar boundary laycr, in which p o T
Paramcter equal to 0.2k for air), amd w() = wB(f,) + ewl(f,) + €2w2(§) FE
Culculation of vrl(g) for Ty = 1.5¢ and Ty = 2.0Q for M -—0
showod that the itcration procoss 1s rapidly convergent; the con-
tribution of the second torm to the slope of the vcloclty prefile

113
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at the surface is 5 percent for T,= 1.50 and 8 percent for T, = 2.00.

In the present calculations the maxlmum error 1n the slope introduced
by taking w({) = wg( ) 1s about L percent in tho extreme case.

(See roferonce 15, in which the authors make use of & linear
viscoaity-temperature relation. See also reference 23.)

Thet w(l) = wg(f) for a lincar variation of viscosity with

absolutc temmerature 1s seon dircctly from the equations of mean
motion in the laminar boundary layer. The oquation of coatinuity
1g sutomatically setisfied by taking .

¥ o oW

e WY =

po* Ay

and

oo o

- V= -
% ox*

pO

The stream function Y* and the dlstance along the surfaecc ¥¥ arc
solected as independent variabhles following the procedurc of van Mises,
and the dynamic oquation of mean mo-ion becomes for zoro presesure
gradient

- = -* = IR S
P, u¥ p¥ u

2 du* D [ = o Ou*
ol ol
Define the nondimenslonsl streem function ¢ by the relation

N

£ = o ——, The dynamic equation tekos the followlng form:

%o Nox¥
Jo o

Eav a/  an\
- S B
R TANIANG d§)
1, '
Since p = —. 1in the boundary layer, 1f u = T, the dynam®c equation in
4 .

this ferm is identical with the equatlon for the ilsothermsl Rlasius
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flow, that is, w({) = wy({), or the value of the velocity ratic w
is equal to the Blasius value atrthe game value of (. The corre-

sponding value of 1 = y¥ -lk%- the nondimensional "distance™

Uy v_¥ x*

from the swrface, 1s obtaz 1npd as follows:

or

IT =1,

Ia¢ g )
P L (o o = %
o T Yo o TS
oy* gy

Qw - E.gu
dn
g 1§ .
d fr
n = -.-.g.. = 7 d_:é
4o oW 4o ¥

the energy ond dymamic equations have = mwique inte.pral and

[(T 1 -1 - 7._;1. M n] - Z-;.-} 2P

ag shown by Crocco. Therefore,

: at r 1 ' ] :
PR ap 2 7 - 2
;:_. - (T..L - 1) - '——"2"‘* 1"10 ] g - -—-*:*- M. A w ig

But w({) = wy(l), ond

n=Tyng - L(Tl
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-

A g
The integrals [ Vi dnp and f de dny &re given in the
: He o

following table, and the mean-veloclty and mean-temperature pro-
Files ocen be calculated repidly by this method, (The values

ow :
of { — are used in the approzimate calculation of Rg
o “rmin
B

(appendix C).)

ip gz . ow
8 iy t = v dng Vg~ Gng | \9n
B
J (o

0.00 0.0000 0.0000 0.0000 0.3320
.20 , 066k 0066 0003 .3319
Ry 1328 0265 002k .331h
.60 .1989 .059% .0081 .3300
.80 L2647 .1065 .0189 .327h
1.00 .3298 .1660 L0367 .3230
1.20 .3938 .2385 L0630 .3165
1.40 L4563 .3236 .C993 . 3079
1.60 .5168 L4210 1468 L2967
1.80 .5748 L5302 2064 .2825
2,00 6298 .6508 L2792 .2663
2.20 L6813 .7821 3854 L2483
2.40 .7290 L9231 Lu6h8 2280
2,60 L7725 31,0733 5776 . 2064
2.8 L8115 1.2319 LT03k .1835%
3.00 .8Le0 1.3973 L3k11 .1618
3.20 L8761 1..5702 9897 . 1408
3.L0 .9018 1.7480 1.1478 .1180
3.60 9233 1.930 ; 1,345 .0986
3.80 ,9hk11 2,1171 1..884% , 0805
k., 00 L9555 2.3067 1,6682 L0640
4, L0 L9759 £.6933 2.0419
.80 .9878 3.0863 2.4280
5.20 ,99h2 3.4828 2,8211
5,60 L9975 3.8812 , 3.2180
6.00 .9990 L, 2805 3.6167

)
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With the approximation that u variles linearly with the
absolute temperature, the slope of: the velocity profile at the
sclid surface is simply related to the glope of the Blasiu;s pro-
file. Thus" ' , o '

ow ~awal | av
TS e e OY e

o afay "4t

~ Since W(ﬁg) = WB(g)';-r

ow dw e
o =z pl - .
on 3'.1

B -

and

or

where b 1s the value of 3 at the "edge" of the boundary layer
(vhen w reaches an arbiltrarily prescribed valiie close to unity) .

It is meen that the shear stress at the suwrface (or the skin friction)
has the szme value ase in the Blasius cege ‘

S — Bu-x- —— ‘-.—— (174 a’n —— —— an - aw \
Ty ¥ = M k. = M ¥ u M - By R H * Koou ¥ == 0 — = {1 ¥
. ay*>1 v ",.Gn AR S 5| \/B
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The reliability of this approximation can be Judged from the calcula-
tions of the ekin-friction coefficient in reference 2k, in which

B TO'TG. From figuwe 2 of reforence 24, the value of the skin-
friction coefficient for an insulated surface at n Mach number

of 3.0 (T = 2.823) 1g -nly 12 percent lower than the Blasius
value and only 2 percent lower at a Mach mumber of 2,0 (Tl = 1.81).
For the noninculated surface, with T, = 0.2, the value of the
skin-friction coefficlent at MO = G0 1is only 7 percent grecter than
the Blasius value and 12 perrtent greater at a Mach number of 3.00.

Since the shear sbrecs at the eurfzce iIs unchanged in first
approximation, the boimdary-laysr momentun Yhickneps has thse sanme
value ag for the Blasius flow

The expression for the digplacement thickness &% gives a measure
of the effoct of the thermal conditions at the sclid surface and
the free-stream lMach number on the thickness of the boundary layer.
By definition,

1=y}

Eir Gl (l - QW) dTg

From the relation between dny and dng

o

[ET - 1) + (l- WB)tquB

0

.12 .
[, (C.66587)
o o]

.73 + (Tl - i)l.73 +

-1 2, s
1.73 Tl H M, (¢.666T)
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For the Blasius flow

The "thickness" of the boundary layer b is glven by
. : -1 o,
o = 5.60 + (Ty - 1)1.73 + Z.—é‘- M_?(0.6657)

and the form parameter E = -2—- is

H=2.507, + 2=ty?
L

2 C

For the inaulaoted surface,

- 7Y - 1 2
H= 2.5 + 3.50 <—-—-—-— M >
) o]

Caleulation of Moan-Velocity and Mozn-Temperature Derivatlives
Because of the sensitivity of the gtability charactorietics of

- . , X a dw
the leminar boundary layer to the beshavior of the quantity ~a-- o] —_— 3
N ay
the values of the required velocity anéd temperature derivatives at
the swrface are calculated directly from the equations of mean

i e 0.76 for air). Ncw

g 4 t
that tho dymamic equation is -b — w' = \Imw') . BSince {(0)= {'(0)=o0,
~

(a4

motion, with u = T = £' = bpw s0O

&5
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W = e m—— T fw ¥-
1 D% N
T
where T'=w'-7_l (T-—l if c—l- In other
Y NE - L
words, the value of wl is readlly computed from the value -
of wl' . In general, wl(k) ig determined from the relation

- 2 (ﬁw’)k”2 = (me')k'l

oY

(¥) mly ' (k-1), (k-1)! Cfm)l (k-2)

vy =~ |(k-1) — wl (k Y e v e
.Ll Tlm
(s) \ (k-1)

(- 2) (=), (x-8) | (Tm)l(

+ - W + o e e ot
(k-1-8)s! 1 '

A 7" i

b

ETim
(k-2)1  (x-2-r) (r+d) (k-3)(x-2) , , (k-3)]
+ (k-a-i')lr.‘ ¢ vy . .+--——--—--2 — §l W
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wvhere

gl(P) = b(pﬁ)ip-l}

. r( b} i)
.. t p~*) o L - (P“*) (-
=D ip v+ (p l)pl A
(p - 1): -g-1 .
. p(pq),i(q)+...+pwl(pl)
(p -q-21)igtt 1 1
D= l} 2, 5
and
" 1
1™ 5
T
1
T T
[o) T e . -—‘1—-—-
1 T )
1
m 1 2 1t
‘p,._2<*l) _Tl
l = 3 m 2
'I.‘l Ly
n Y3 m_ote
vy Qﬂ | Tl Crl ) -7l
p = J-l ———- — AL P g M—————
* 7.° 7 72
1 - 1
1 2 "
(" 7" T
g—-—?— = m(m - 1) ( ) +m
n 2 T
‘I‘l Tl 1
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Ty T 3 m n
@)‘_~:(m, 2)(1> ' smlm - 1) T1y'T4 +mTl'”
i 7,7 7, T
)" ()", @) sty
— = (m, 3) -~-£—-+6( , T+ — [uTl'Tl'"
Ty T o h Ty

. T iv
+ 3(‘1‘1“)2] + m ;

3

1

(Tm v (m v)5 _ (Tl :)3Tln (a, 2)
m-— m, 1{-) - +lO(m, 3) - ; + - 3 Erj(Tlt)(Tl" 2

T Tl 1 1
+ 10{7T." 2p_try m(m - 1) 10T Mp. rre m 1v Tlv
(l) 7 + T2 ]Tl +5T T :|+m'.r—-m
1 1
N 6 1
Tm Tl!\ T, ! ‘T n : -
(-—-Z— = (m, 5) ( +15(m, 1) () LB Ll‘5(T N2, )?
T m T 5 m b 1 K 1
1 1 1 1

o ' tee o, (Iﬂ, 2) 4 m = iv 7 3
+ 20(T, 1)1y ] SR T, 5(Ty )P Y e 15( ")
1
m(m - 1) p, V7
+ s [10('1: "') + 157, "Iy vy o6rymy ] b m—

in
: 1 Tl
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3
<
it

awlV - 5(y - l)MOE(Ewl"wl"’ + wl'wliv)

3
1

vi , vl 2 2 w. iv . 2 v
p Taw T - (7\‘— l)MO [lo(wl'”)_ + 15wl W+ 6"’1"’1 j}

Each veloclty derivative is determined from the Mnowledge of all the
preceding derivatives.
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it

(m, 2) = m{m - L)(m - 2)
(m, n) =m{m - V(m-2) ... (n - n)

m=0,76

(z, 1) = -0.182k

(m, 2) = 0.226176
(m, 3) = -0.50663L
(m. &) = 1.6L4145
(m, 5) = -6.959939

wiere

n " _ 1) 2 \2
T," = aw) (v - 1), (wl')

et 1 g 2 "
Tl ! = &Wl Y- 3(7 - l)IIo Wl"wl

iv i -
1 ¢ "o (7 - l)MOe [3(141")2 + hwl’wl'”J

c!
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APPENDIX C

RAPTD APPROXIMATION TO THE FUNCTION (1 - 27\.)\"(0) AND THE
MIN IMUM CRI‘I‘ICAL REYNOLDS NUMBER

In section 5, a criterion was derived for the dependence of
the minimum critical Reynolds number Rg oryy on the local distri-
“min

bution of mean velocity and mean temperature across the boundary
layer. It was found that

vhere c¢_, is the value of ¢ for which (1 - 2)v(c) = 0.580 and

o
vie) = - = ‘2’-3- SON ...< >
Iy (w? ) dy

_,(?.‘i)lc B
N\ ° 2 1\7\]

(Dv?J 3n \T / |

[}

Ae) 2 (yc - yl)

W

c

?m)
RN |

c
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A rapid method for the calculation of the functlon (1 - 2)v(c)
and tho minimum critical Reynolds mumber 1s devcloped by making
une of the approximation that the viecosity veries linearly with
the absclute temperature (appendix B). (since the effect of
variable viscosity on the mean-velocity profile is overestimated
in this approximation, the values of Rg (fig. 6(a)) calcu-
nin
lated by this method are lower than the values calculated for p.:TO' 6
when heat is added to the fluld through the sclid swrface and higher
vhen heat is withdrawn from the fluld.)

For p= T, the dynomic equation (appendix B) is

end therefors

2 ) /1 dw
———iem  — —— — -~ T
v

o

But

so that
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vhere

7] "

() i)

=

The regquired values of Wi (E?%), and { ore ovtained from the
. ‘ m

table in appendix 3,

Tne amall correction to the slope A(c) 18 emsily calculated
once the mean velocity profile has been obtained (appendix B).
Thus

Me) = 23320, A(0) = 0
’].‘l c ' '

The quantity (1 - 2.)v(c) has been calculated as a function
of ¢ Ffor various velues of T, &t Mo = 0, 0.70, 1,30, 1.50, 2,00,

3.00, and 5.00, and the results of these calculatlons are given in
the following table, The decisive stabilizing Influence of with-
drawing heat from the fluid at supersonic velocitises is 1llustrated
In figure 7.
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Ty o Rg Crmin Ty o Rg pin
MO =0 I‘{O = 0.70
0.70 0.1945 3650 0.70 0.1670 8440
.80 ,2695 1080 .80 ,2390 2110
.90 .3485 ko2 .90 .3265 613
1.25 .5435 67 1.25 525 T4
1.50 6240 36 1.50 L6265 38
M =1.30; ¢ > 0.231 M, = 1.50; ¢ > 0.333
0.90 0.2455 | 9230 1.30 0.3450 | 2770
1.05 L4075 392 1.35 1585 275
1.20 5170 121 1.ko .5505 99
1.3422 5450 92 1.4556 62756 Lo
1.50 6355 42 1.60 7732 16
M, = 2.00; ¢ >0.500 Mg = 3.00; ¢ > 0.667
[ - -l
1,63 0.507h4 671 2,48 0.6730 186
1,65 .5438 207 2.52 L7058 59
1.70 L6155 75 2,62 7655 2k
1.75 L6749 Lo 2.72 0105 1k
1.81 1275 25 2.77 .8295 10
1.85 L7612 19 2.8225 .8500 9
M, = 5.00; ¢ > 0.800
5.19 0.8008 174
5,20 .8036 30
5.30 8262 23
5.75 .9008 6
6.0625 L9350 3
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APPENDIX D

\

TEAAVIOR OF g; G g‘-—;-) FROM EQUATIONS OF MEAN MOTION

In order to determlne the effect of free-stream Mach number,
thermal conditions at the solid swurface, or froe-streanm preszure
gradlent on laminar stebllity, it is necessary to know the relation
between these physical parameters and the distribution of tho

d
quantity p o acrogs the boundary layer. Theo value of ¢ p EH\
dy dy dy

at the solid swrface is obtalned dlrectly from the dynamic eguation

(oquations (6.3) and (7.2)). The valus of fi-; ( aw at the
ay” \ W

swface, which 1s also useful in the discussion of laminar ste-

bility, 1s obtained from the dynamic and energy souctions as

follows:
a0 .
[E_.. GE:’.) RS ( G
ay® \ & a2\t / .

VU an" o e (1y)®
= et - o oy _, T —— A i
T 7,? 1?2 7,3

Differentiating the dynamic equation once riclds the result

2T vy " Ty )" o
w. 't _—-E, wlv m(m - 1) g_“_)__ + _"_}____
1 T, T,
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aT*
at*
— Op*

and the rate at vhich the work is done by pressure gradient u* S?—
xX*

both vanish, and the rate at which a fluld element loses heat by
conduction eqtmls the rate at which mechaenical energy is transformed
into heat by viscous dissipation. The energy equaticn becomes

3\ o/l Tt \owx

'At the solid surface the rate of change of temperature

or

mt2
iy

2 AR
Tl" = - a(y - l)MO (wl')a -n 7 — < C

Utilizi}lg the expression”for wl”-' and Tl" glves

2 . o 1)3
E'ECL_‘ = -2(m+ 1) -—--[—( )] + o(l1 'm‘(y.-l)N (l)
dy~ \T Jl dy l

vhere

d /v m+ 1 1 82 d{’-—o*
lw\r /1 "~ WM T T
1 7 ? 7, B 0t a

130



NACA TN No. 1360

2 '
From this expression for g°-—- il the followlng con-
y*\T /],

clusione, which are utilized in the stapility analysls, ars reached:

d fw' , A& Syt
When |—{— vanishes, the quantity |— (— is
dy \T 1 ay” \T
1

8till positive.

When the free-stream velocity is uniform,

7o) LT ’ . 2
a= [ ' : : w3 Iy’
— --)] = o(l + m)(y - l)Moe (——g—- + 2(1 + m)2 (——-—2— '
) .
a2 [yt
that is, ———2- (——) 1s alwaye positive,
- _
b 1
When the swrface is inguleted,

2 " (‘G.‘__I)B

) w!

(=) = e +m(y - 1 LI

dy° \T ° o

] 1
T n
as [
and —-—é —») 1s elwaya pesitive, resardless of the Presoure
dy= \T ‘ '
1

gradient.
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"APPFNDIX E

CALCULATION OF CRITICAL MACE NUMBER FOR STABILIZATION
OF LAMINAR BOUNDARY LAYER

For thermal equilibrium the rate of heat conduction from the
gas o the solid surface balances the rate at vhich heat is rediated
from the surface, If the rate at which heat 1s withdrawn from the
fluid reaches or oxcoeds 2 certain critical value at a given local
supersonic Mach number, the laminar boundary-laysr flow is stable
et all Roynolds numbers. (See section 6b.) The purpose of the
following brief calculation is to determine the squilibrium suwrface
temperatures at several Mach numbers and compare thege temperatures
with the critical temperatures for laminar stability. (See fig. 8.)

When the solid suwrface is in thermal egquilibrium

y .

'L Ff:'(éii\ N 1L _ [_;_1 ) __ i]
% 5;:_)1 =do G (.Ll“) -(TO'-)_ ax (1)

C

vhere € is the emissivity, © 1s the Boltzmenn constant, and the
other symbole have alresdy been dofined, (See references 1h and 15.)
Conelder the case in vhich the free stream is uniform and the
temperature is constant along the surface. For ¢ = 1,

e T % “i0.
— =-3--(T -T)ﬁf
oy 8 8 L\ oy

1 1

Y - 1

vhore stagnation temperatwre Tg cqueles 1 + 5 M02.

132




NACA TN No. 1360

e
o oo

¥ 0,332

Also -§E> o= B
/1

P 1T the aprroximation u =T
® g
U’C) x T 1
is employed. (See appendix B.) Since k¥ = cpuo*pl = cpquTl’
= T o TSRS = vl
1 g;;' = 0,33 cp\’uo p* ay To‘(;s - Tl) V-O Qii
1

When the integrations in equation {1) are carriled out, the fol-

lowing relation is obtained for the determination of the equilibrium
surface temperature:

| V& (1, - Y - (75 - T4) \[ﬁ;
vhere
(EZ¥)6 €L
The equliibrium swriace temperature under free-fiight condl-

tiong is affected principally by the varistion in density '5’;?%‘ with
The rosulte of calculations carr

eltitude h. riried out for albti-
tudes of 50,000 end 100,000 feet arec given in the following table:

X = 2,2/

—
m T - T
h M o - Tlecuil ° Yor
(1) ° - (fig. S)
50 x 103 3.0 0.370 0.255
100 x 103 2.0 220 ' .185
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Tn thess calculations the following data are used:

€2=0.50
L =2 1%

T * = 400° F abs,

T = 4.80 x 10713 Btu/sec/rt?/(des ¥ abs. )

cy = 7.73 Btu/sing/deg F obs.
-u-;; = 3.02 % 1077 slugs/ft-sec
Egi = 980 ft/sec
P = 3.61 x 1074 slugs/£t3 at 50,000 £t

3.31 x 1077 elugs/ft3 at 100,000 £t
K = 3.35 % 10~* at 50,000 £t
3.66 x 1073 at 100,000 £t

Since T_ - T > T, -T for M. = 3 at 50,000 feet
S lequil 8 Ler © ?

altitude and for M, = 2 at 100,000 fecet altitude, the laminer
boundary layer ls completely stable under these conditions,

Tt should bo noted that under wind-tunnel-test conditions in
which the model is stationary. these radiation-conduction effects
arc absent, not only because of reradiation from the wzlls of the

wind. tunnel but also becauso the surface temperatures are low -
generally of the order of room tomperaturo,
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AUXTLIARY FUNCTIONS FOR CALCULATING THE STABILITY OF THE LAMINAR

TABLE T

BOUNDARY LAYER FOR INSULATED SURFACE

138

MO o]

0.0372 0.0000 0.0004 0.0102 0.5220 0.2889 0.0689 0.2999
.04k .0001 .0029 .0285 L7k8 L2740 .060k . 306k
.1115 .0003 .0099 .0561 L4303 .2590 .0530 . 3124
.1486 .0006 L0235 .09k0 .3887 L2433 .0Lk&0 .3161
.1857 .0012 .0L62 1430 .3499 .2278 .0L03 .3211
.2226 0021 .0802 .2040 L3139 .2120 .0350 .3230
L2594 .0033 .128% L2782 .2808 .1958 .0301 . 3217
. 2960 .0050 1937 .3670 .2505 1797 .0256 L3174
.3323 L0071 L2794 721 2232 .1639 L0217 . 3084
.3682 .0098 .3896 .5960 .1987 L1487 .0180 .2935

Lbo37 .0131 .5286 .78 L1770 .1350 .0139 .2708
ks L0142 5767 .T90% J1711 .1312 .0125 .2618
MO = 0.50

0.0362 -0.0000 -0.0004 -0,0148 0.5122 0.2223 0.0443 0.1927
.0723 -.0000 -.0001 -.0234 L6 2127 .okol .2086
.1085 .0001 .0029 -.02L4 .4oLg .2019 .0356 .2193
L1446 .0003 .0107 -.0169 .3847 1904 .0316 .2280
.1806 .0007 L0254 -.0003 347k .1789 .0282 .2366
.2166 .001k .0Lg2 ,0260 .3127 L1662 .02k .2L20
.2525 .0023 .0846 .0627 .2807 .1530 .0217 2425
.2882 .0036 1342 .1103 .2513 .1390 .0188 . 2406

.3237 .0054 .2010 .1695 L2246 .12h7 .0158 .2333

.3588 .0076 .2882 L2412 . 2005 .110% .0128 .2179

.3936 .0103 -5000 .3261 .1790 .0963 .0094 .191k

L1280 ,0137 L5407 Jhokr .1602 ,0828 .0055 L1hkhy

b, 306 ,01%0 .5526 L1327 .1589 .0816 L0051 .1397

L4362 L0146 5794 .Lso1 .1560 ,0792 .0038 1262
¥, = 0.70

0.0353 -0.0000 -0.0009 -0,0321 0.5031 0.1839 0,0321 0.1484
.0705 -.0000 -,002h4 -.0590 .b599 .1786 ,0300 . 1652
.1058 -.0000 -.0025 -.0751 1ol .1721 .0279 .1819
.1k10 L0001 .0006 -.091% .3808 1652 .0257 L1981
L1762 .000k .0090 -.0951 L3448 .1569 .0233 .2128
.211k .0008 .0248 -.0896 .3113 ,1478 .0209 .2259
. 2h6h .0015 L0501 -.07h1 .2802 .1379 .0187 .2358
,2813 .0026 0872 -,0478 .2516 L1272 .0165 L2436
. 3161 .0039 .1389 -,0098 ,2255 1157 L0142 . 2466

.3505 .0058 .2082 L0412 .2018 .1042 .0118 2417
.3847 .0081 .2985 L1067 .1806 .0925 .0085 2272
L4185 .0109 L4137 .1886 1619 .0813 .0052 1987
L4352 .0126 L4821 .2363 L1534 .0760 .0030 1787
LLl52 .0137 .5270 2674 .1486 L0733 .0016 1618
k559 .0lkg L5790 .3027 .1h436 .0709 -.0002 1575

NATIORAL ADVISORY
COMMITTEE FOR AERONAUTICS




139 NACA TN No. 1360

TABLE I - Concluded
AUXTLIARY FUNCTIONS FOR CALCULATING THE STABILITY OF THE LAMINAR

BOUNDARY LAYER FOR INSULATED SURFACE - Concluded

c by v L Hy H, My Ny
M, = 0.90
0.0334 0.0000 -0.0015 -0,0503 0.4816 0.1303 0.0180 0.0908
L0667 -.0001 -, 0047 -.0972 AR .1298 .0185 L1133
.1001 -.0002 -.0082 -.138% ,Lokg .1281 .0185 .1366
.1335 -.0002 -.0102 -.1746 . 3696 .1253 .0182 L1594
.1669 -.0001 -.0090 -.203h .3365 .1213 L0175 .1825
.2002 .0001 -.0029 -.2250 . 305k L1163 L0166 .2055
.2335 0006 .0098 -.2387 L2765 .1103 .0157 2952
2666 .0012 .0312 -.24l41 2497 .1030 L0143 .2439
.2997 .0022 L0634 -.2407 2251 .0gL7 .0128 .2597
.3326 .003L .1086 -.2281 .2026 .0855 L0110 .2703
L3652 ,0051 L1697 -,2063 .1823 L0759 .0090 ,267Th
L3976 .0072 ,2496 -.1730 .16l L0656 .0060 .2515
.Log6 .0098 .3518 -,1302 .1480 L0560 .0021 .2185
4612 .0130 L4805 -.0784 .13h0 ,0L6h -.0036 L1h31
4636 L0132 L1913 -.07hd .1330 ,0L63 -.0040 L1373
Lu812 .0153 .5788 -.0k21 L1261 0413 -.0076 . 100k
MO = 1.10
0.0990 -0.,0003 -0.01k0 -0.2037 0.%026 0.0673 0.0012 0.0806
.1320 -, 000k -.0206 -.2630 3682 L0686 .0038 1068
1650 -.0005 -.0255 -.3166 . 3358 L0683 L0051 L1319
.1980 -.000k -.0272 -,36L0 . 3054 L0667 .0058 .1598
.2309 -.0002 -.0232 -.hoko 2770 L0632 .006L .186k
.2638 .0002 -.0125 -, 4396 2506 0581 .0062 .2101
. 2965 .0009 .0072 -.4680 2263 .0516 .0058 .2293
,3292 ,0018 .0382 -.koo6 ,20L0 .0lk31 ,00k7 216
.3616 .0031 .0829 -.5086 1837 .0333 L0031 . 2hsh
.3938 .00Lg J1hh2 -.5239 1655 .0218 .0005 2310
.L2k6 .0097 2247 -.5516 1498 .0081 -.0032 .183h4
572 .0098 .3300 -.5675 1350 - .0060 -.0087 076k
4836 0126 Lot -.6112 1245 -.0203 -.0157 - 0737
.510% .0160 .5789 -.6875 .1151 -.0360 -.0230 -.2366
MO = 1.30
0.2541 -0.0008 -0.0561 -0,5982 0.2487 0,024 0.0003 0.2200
.2858 -.0005 -.0505 -.6508 .2255 0233 .0016 =y
.3173 .0001 -.036hL -.6987 .20k ,0183 .001k 264k
.3488 .0009 -.0117 -.T430 1845 .0109 0003 L2742
.3800 .0021 .0258 -.7856 L1667 ,0019 -.0016 .2700
L4111 L0037 L0790 -.8300 L1507 -.0099 -.0048 .2285
L4ka8 L0057 .1508 -.8834 ,1366 -.0236 -.0090 .1184
721 .0083 .2hlg -.9608 .1242 -.0lkok -.0169 -.0818
.5020 L011h L3652 -1.0977 .1136 -.0628 -.029h - hoh3
5072 .0120 .3893 -1.133% L1119 -.0671 -.032% -.5971
.5416 .0167 ST -1.307h .1020 -.0834 -;0549 -1.5080
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TABIE II

AUXILIARY FUNCTIORS FOR CALCULATING THE STABILITY OF THE

TAMINAR BOUNDARY IAYFR FOR NONINSULATED SURFACE

140

c A v L Hy 32 “3 13
M, = 0.70; T, = 0.70
0.0262 0.0056 0.0825 0.0635 0,6102 0.3272 0.052k 0.2748
0521 L0112 .1645 .09h9 5725 .3157 .0502 .2920
LOTT7 .0166 266 .1184 .5367 .30h5 .0L81 .3081
.1030 .0220 .3297 .1400 .5026 .2936 .0hs8 .3233
.1281 L027h L1k 1632 4703 .2828 .0433 .3380
.1529 .0327 .5023 .1904 4396 2712k .0h12 .3519
L1701 .0365 .5661 .2130 5191 .2651 .0395 .3610
.1726 .0370 5754 .2163 k162 .26k2 .039h .3623
M,=0.70; Ty = 0.80
0.0237 0.0033 0.0486 0.0279 0.5954 0.2811 0.0L93 0.1369
L0472 .0066 0965 0374 .5620 2737 L0475 . 1504
.0705 .0099 L1443 .ok30 .5300 .2663 .0bs7 L1635
L0937 .0132 L1925 .0Lk82 ool .2590 .0h37 .1763
.1168 .0164 L2417 .0550 701 251k .0b17 .1882
.1397 .0197 2926 .06ko .Lh2o .2h39 .0397 .2001
.1625 .0230 .3457 .0789 kis2 .2363 0378 .2110
.1851 .0263 o017 .0982 3897 2287 0359 .2213
.2075 .0297 4614 L1236 3654 .2210 .0339 .2311
.2298 .0331 .5253 .1562 342k ,2133 032) .2h00
.2k09 .03h9 5592 L1754 .3313 .209h .0310 .2hk3
.2hT75 .0359 .5801 L1877 3248 L2071 ,0303 .2h65
M_=0.70; Ty = 0.90
0.0L433 0.0036 0.0517 0.0051 0.5506 0.2k10 0.0435 0,1426
.0863 .0072 .1028 -.0047 L4939 ,230h .0hok .1638
.1201 .0108 .1568 -.0111 Jhak .2191 .0370 L1846
171k .01k5 .2173 -.0079 .3930 .207h .0337 .2032
2135 .0185 .2885 0096 .3485 .1951 .0304 .2203
.2551 .0227 L3746 .Ob62 .3080 1825 .0272 .2339
.2963 .027h k805 .1073 2715 .1698 .02k0 .2h62
.3166 .0299 .5h26 .1k89 2547 .1637 022k .2517
.3268 .0312 5762 1776 .2L66 .1606 0217 .25h1
M = OOTO’ =1.25
0.0346 -0,0016 -0,0237 -0.0L76 0.5100 | 0.1750 0.032h 0.1k462
.0692 -.0032 -.0k76 -.0797 4678 .1710 .0310 .1634
.10L0 -.0048 -.0698 -.1013 L4276 .1661 .0292 L1794
.1389 -.0062 -.0886 -.1132 .3896 .1600 .0272 .1956
.1738 -.0076 -.1021 -.1155 .3538 .1529 .0251 .2108
.2088 -.0087 -.1085 -.1081 .3202 L1448 ,0228 .2238
.2k39 -.0095 -.1057 -.0912 .2888 .135h4 .0208 2342
.2789 -.0101 -.0917 -.0645 2597 .124g9 .0185 .2ho2
.3138 -.0103 -.0641 -.0281 .2330 .1133 .0161 .2k09
.3485 -.0100 -.0203 L0179 2086 .1008 .0139 .2297
.3831 -.0092 .ok27 073k .1865 ,0870 .0113 .2069
L7k -.0079 .1286 1373 .1668 0728 .0083 L1616
512 -.0059 L2h1k L2071 .1h495 .0582 .00k2 .0816
.b8L6 -.0031 3859 2770 L13k5 .0h27 -.0012 -.0601
.5092 -.0006 .5184 3212 .1248 .031h - 0067 -.2262
.5190 .0006 5779 3349 .1212 .0269 -.0091 -.3028

NATIORAL ADVISORY
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TABLE IIT

NACA TN No.

FHASE VELOCTTY, WAVE RUMEER,AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC

DISTURBANCE (STABILITY LIMITS) FOR INSULATED SURFACE

c o | R % )
Mo =0
u.0372 0.0321 25,500,000 0.0038 3,030,000
LOThY L0685 1,500,000 0082 178,000
.1115 11103 278,000 .0131 33,100
.1b86 .1585 83,000 .0189 9,880
.1857 2146 32,600 .0255 3,880
2226 ,2803 14,800 L0334 1,760
L2594 .3590 7,700 .ok27 917
. 2960 L4535 %, 420 0540 526
.3323 5707 2,760 L0679 329
.36%2 L7243 1,8%0 .0862 220
.bo37 .9589 1,360 ,1ik2 162
.41k3 1.0770 1,28 .1282 153
RS 1.27130 1,530 L1515 182
.h0737 1.2940 1, .1540 223
. 3682 1,1960 3,530 .1h2h L2y
.3323 1.0400 6,710 1238 199
.2960 .8728 13,300 .1039 1,580
L2594 LTATT 27,500 .0854 3,270
Mg = 0.50
0.0362 0.0251 356,600,000 0.0029 4,270,000
.0723 0538 2,130,000 0063 218,000
.1085 392,000 .0101 45,700
.1uhb 1250 116,000 0146 13,500
.1806 1695 4k 500 .0198 5,190
.2166 2216 20,200 0258 2,360
2525 .2829 10,500 L0330 1,210
.2882 .3556 5,850 .0%1h 682
3237 Jhhh2 3,570 .0518 416
.3588 .5549 2,330 L0647 272
3936 6993 1,620 .0815 1
4280 9301 1,230 .1084 14
1306 .9558 1,220 .11k 142
h362 1,010 1,190 11182 139
4362 1.18% 1,410 1784 16h
4306 1.2150 1,58 1416 18k
280 1.2150 1,660 1416 194
3936 1.1250 3,080 .1310 159
3588 9738 5,670 L1131 661
3237 .8272 10,800 L0964 1,260
.2882 L6869 21,100 .0800 2,460
- 7 M, = 0.70
0.0353 0.0191 53,400,000 0.0022 6,100,000
0705 L0415 3,060,000 .o0kT7 349,000
11058 L0677 555,000 0077 63,400
1410 0984 161,000 0112 18,400
1762 ,13kh 61,100 L0154 ,
211k 1766 27,300 .0202 3,120
.oLEY 2268 »3,800 L0259 1,580
2813 . 2857 7,630 .0326 872
3161 .3570 4,550 .oko8 520
. 3505 L hk33 2,900 L0506 331
L3847 L5515 1,960 0620 224
185 6951 1,420 .07k 162
4352 L7917 1,230 -090h 1h1
Li52 .8655 1,160 .0939 132
4559 LoT0k 1,110 1108 127
1539 1.1230 1,330 .1283 152
452 1.1k20 1,650 1304 189
.b352 1.1230 1,93 .1283 227
185 1,0720 2,670 .1225 305
L2847 .97281 L, 81c 1072 550
. 3505 L1965 8,880 L0910 1,010
2161 L6659 16,700 L0761 1,910
_— -
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TABLE III - Concluded
PHASE VELOCITY,WAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL SUBSONIC DISTURBANCE

(STABILITY LIMITS) FOR INSULATED SURFACE - Conoluded

c =1 R ag Ry
M, = 0.90
0.033k 0.0107 111,000,000 0.0012 12,600,000
L0667 .0248 5,960,000 .0028 679,000
.1001 .ok21 1,030,000 0048 117,000
.1335 0632 290,000 L0072 33,000
.1669 .0885 106,000 .0101 12,100
. 2002 1186 16,000 .0135 5,240
.2335 L1540 22,600 L0175 2,570
.2666 .1561 15,322 .oegg 1,328
.2997 259 .02
.33%6 -3053 1,320 ‘08 kg2
.3652 37T 2,820 .0430 321
.3976 1638 1,950 .0529 222
.hog6 5733 1,L10 .0653 161
16 7 s & i
1463 . .
‘1812 .8810 1,010 100} 115
1812 1.0130 1,230 L1154 150
4636 1.0120 1,740 1153 169
.h612 1.0070 1,858 1148 227
RIT-5 .9027 3,1 .1029 - 363
.3976 .7823 5,590 .0892 637
. 3652 .66L2 9,940 0757 1,130
-33%6 5523 18,500 .0629 2,100
M, =110
0.09%0 o.oogg 5,722,000 0.0009 6é§,ggg
.1320 .02 769,000 .0029
.1650 .0h68 22&1000 .0050 eh:loo
.1980 .0707 85,000 .0076 9,160
,2309 0991 18, 300 .0107 L,130
.2638 .1329 19,300 L0143 2,080
.296% 1727 10,600 .0186 1,1k0
.3292 .2200 6,260 .0237 575
,3616 L2755 3,920 0297 23
.3938 3baT 2,610 .0368 281
R L4159 1,850 .OLLS 122
572 .5193 1,350 .0560 1
4836 L6268 1,100 .gggi 133
5104 .8010 991 .
5104 TL9165 1,220 .0988 131
i b s =
572 .8023 .
‘1246 6785 5,930 L0732 %39
.3938 5766 10,400 0622 1,120
M, = 1.30
0.2541 0.0451 63,800 0.0047 6,630
,2858 .0818 24,800 .0085 2,570
L3173 .1202 12,300 .0125 1,280
.3488 1636 6,990 .0170 Iﬁé
.3800 2132 L, 280 0222 : i
4111 .2707 2,800 0281 9
.Lh18 .3377 1,930 .0351 281
w72l 4166 1,k20 .0b33 147
.5020 5123 1,110 0532 115
5072 .5316 1’852 ‘osgg 1;;
5416 . 7582 LOT!
5h16 .8931 1,080 .0928 112
-5 93 .
.5072 .T781 2,310 .0809 241
5020 L7592 2,550 .0789 265
b2l L6458 4,500 L0671 L68
RISE 5401 7,980 L0561 829

WATIONAL "DVISORY
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, TABLE IV
PHASE VELOCTTY, WAVE NUMBER, AND REYNOLDS NUMBER FOR NEUTRAL

SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR NONINSULATED SURFACES

c . a R Qg R6

MD = 0.70; Tl - 0.70

0.0262 0.0339 82,400,000 0.00L41 9,900,000
.0521 073k 5,360,000 .0088 64L 000
L0777 .1188 1,110,000 0143 133,000
.1030 .1708 371,000 .0205 Lk 600
1281 .2308 161,000 0277 19,300
.1529 .3030 83, %00 .0364 10,000
.1701 .3670 57,200 .okl 6,870
1726 3777 54,400 .0ksk 6,540
.1726 4986 69,000 ,0599 8,280
.1701 LL9T7T7 73,900 .0598 8,870
.1529 k732 121,000 .0568 14,500
.1281 1175 270,000 .0502 32,400
.1030 . 3460 711,000 .0L16 85,400
L0777 .2620 2,500,000 L0315 300,000
.0521 .1713 14,600,000 .0206 1,750,000

MO = 0.70; Tl = 0.80

0.0237 0.0237 157,000,000 0.0028 18, 300,000
.OLT2 L0504 9,910,000 .0059 1,150,000
.0705 .080L 1,970,000 .009k 230,000
.0937 .1138 633,000 .0133 73,700
.1168 .1509 263,000 .0176 30,600
.1397 .1923 129,000 .0224 15,000
.1625 .2382 70,900 .0278 8,260
.1851 .2908 42,600 .0339 4,960
L2075 .3520 27,500 .0ko9 3,200
.2298 237 ' 18,800 .okgh 2,190
.2409 L6638 15,900 L05kk 1,860
L2475 .Lo62 14,500 .0578 1,690
.2h75 6308 18,500 L0735 2,160
.2409 .6233 21,400 .0726 2,500
.2298 .6056 27,200 .0706 3,170
2075 .5609 44,900 065L 5,230
1851 .5062 77,400 .0590 9,010
.1625 . bk65 141,000 .0520 16,400
11397 .3827 280,000 .0hh6 32,600
1168 .316L 630,000 .0369 73,400
.0937 2439 1,690,000 0290 197,000
0705 .1822 5,890,000 .0212 686,000
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TABLE IV - Concluded
PHASE VELOCITY, WAVE NUMBER, AND REYNOLDS NUMBER FOR
NEUTRAL SUBSONIC DISTURBANCE (STABILITY LIMITS) FOR

NONINSULATED SURFACES - Concluded

c a R % Re

M, = 0.70; T} = 0.90

0.0433 0.0368 17,100,000 0.0042 1,930,000
.0863 .0815 1,0L0,000 .0092 118,000
.1291 .1353 200,000 .0153 22,700
171k .1996 62,500 .0226 7.070
.2135 2775 25,500 .0314 2,880
.2551 .3728 12,400 .0k22 1,410
.2963 1980 6,970 .0563 789
.3166 .5814 5,520 .0658 624
.3268 L6347 : 4,990 .0718 565
.3268 .7817 6,500 .0884 T35
.3166 L7701 7,920 .0871 895
.2963 L7307 11,600 .0827 1,310
.2551 6275 25,200 .0720 2,850
2135 - .5133 60,300 .0581 6,820
J1714 .3972 170,000 .obkg 19,200
.1291 .2858 617,000 .0323 69,800
.0863 .1793 3,740,000 .0203 423,000

My = 0.70; T, = 1.25

0.0346 0.0160 78,800,000 0.0016 8,090,000
+ 0692 L0346 1,380,000 .0036 450,000
.1040 .056h 770,000 .0058 79,000
.1389 .0819 217,000 .008k 22,200
.1738 .1120 78,900 .0115 8,100
.2088 J1k77 34,000 .0152 3,490
.2L39 .1899 16,500 .0195 1,700
.2789 .2ko3 8,830 L0247 907
.3138 . 3002 5,070 .0308 520
. 3485 .3722 3,110 .0382 319
.3831 .Lsol 2,020 Rollyal 207
ATh .5668 1,380 .0582 1h2
512 . 7061 1,000 .0725 103
LL8L6 .Q067 760 L0931 78
.5092 1.1800 643 1211 66
.5190 1.4480 615 .1486 63
.5190 1.5880 : 640 .1630 66
.5092 1.7250 806 .1770 83
_L48L6 1.5370 1,390 577 1k2
45102 1.2580 2,740 1291 281
1Tk 1.0330 5,360 .106¢ 550
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